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1. Introduction

This paper focuses on the identification and estimation of static games of incomplete informa-

tion with correlated types. Instead of making the assumption of (conditional) independence of

players’ types to simplify the equilibria set, I establish a method that allows to identify subsets of

the space of covariates (i.e. publicly observed state variables in payoff functions), for which there

exists a unique Bayesian Nash Equilibrium (BNE) and the equilibrium strategies are monotone func-

tions. The unique monotone pure strategy BNE can be characterized in a simple manner, based

on which I propose an estimation procedure exploiting the information contained in the subset of

the covariate space, and establish the consistency and the limiting distribution of the estimator.

Static discrete games, like the one I study, are of interest because of their empirical applications.

Bjorn and Vuong (1984), for example, studies labor force participation. Recently, this class of

games are more widely adopted in the empirical industrial organization to study firms’ entry

behavior (e.g. Berry, 1992; Bresnahan and Reiss, 1990, 1991a,b; Ciliberto and Tamer, 2009; Jia,

2008). In much of this literature, an agent’s payoff often depends on not only her covariate

variables, but also other agents’ choices. Therefore, the strategic effects are embedded in the

equilibrium solution to the simultaneous equations (i.e., best responses of the game).

In this paper, I study a full parametric binary game of incomplete information, which might

have multiple equilibria.1 The proposed methodology contributes to the literature in two aspects.

First, I allow players’ types to be correlated, which is motivated by empirical concerns. In much

of the incomplete information game literature, e.g., Aguirregabiria and Mira (2002), Bajari, Hong,

Krainer, and Nekipelov (2010) and Pesendorfer and Schmidt-Dengler (2003), the identification

strategy relies heavily on the fact that a player’s equilibrium beliefs about her rivals’ choices de-

pend on observed state variables only and can be nonparametrically estimated thereof, which is

mainly a consequence of the (conditional) independent types condition. In contrast, I assume that

players’ private payoff shocks (types) conform to joint normal distribution and are positively cor-

related with each other. The correlation coefficient is also a parameter of interest in my structural

model.

The quest for correlated types in discrete games is motivated by several considerations. The

(conditional) independence of types implies that players’ actions should also be conditionally

1Aradillas-Lopez (2010) estimates the same game structure without making parametric restrictions on types, by assuming
that players do not have exact knowledge about the distributions involved and then using an equilibrium concept defined
in Aumann (1987).
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independent given the covariates, which may not happen in the data.2 Moreover, this restriction

implies that all equilibrium solutions must be monotone pure strategy BNEs, which is convenient

but rules out the possibility of non–monotone strategy BNE. Second, allowing correlation is also

important for reasons of the model specification. For example, consider two firms entering a local

market: one would expect the private payoff shocks on the profitability of entry to be positively

correlated with each another, if the shocks depend on some common factors of the local market

and each player only observes the integrated value of the shock, but can not decompose it into the

idiosyncratic noise and the other part from the common factors.

Second, the proposed approach does not make any assumption on equilibrium selection mecha-

nism. In the literature, the multiple equilibria issue invokes ad–hoc equilibrium selection assump-

tions in data-generating process, i.e., when there are multiple equilibria, only one equilibrium is

being played in data (see, e.g., Bajari, Hong, Krainer, and Nekipelov, 2010; Tang, 2010; Aradillas-

Lopez, 2010; Wan and Xu, 2009; Sweeting, 2009). Dropping the independence assumption even

complicates the multiple equilibria issue. First, it is difficult to characterize all the equilibria, espe-

cially for the ones with non–monotone strategies. Second, the number of equilibria is unknown.3

Hence, even if one imposes an equilibrium selection rule, it is difficult to implement in practice.

This paper extends a novel approach called “level–k rationality” in Aradillas-Lopez and Tamer

(2008) for the identification of a structural model and show that, in a subset of the space of

covariates (i.e. publicly observed state variables), there is a unique BNE, in which equilibrium

strategies are monotone functions. Moreover, this subset can be identified in a straightforward

manner, and therefore is estimable.4

The (unique) monotone pure strategy BNE can be characterized in a simple manner. In the

presence of correlation, it is costly to obtain a closed–form solution for the equilibrium in general.

In the binary decision game considered in this paper, an important insight is that a monotone

pure strategy is fully characterized by a cutoff value in the support of type. Therefore, a numerical

solution of BNE can be solved as a fixed point in a vector space, if the equilibrium is a monotone

pure strategy BNE.

2There are other two possible sources for the observed correlation between players’ actions: unobserved heterogeneity (see
Grieco, 2010) and multiple equilibria (see De Paula and Tang, 2012).
3Suppose U conforms a binormal distribution and U1 and U2 are conditionally independent given X. Then it is known
that the number of equilibria ranges from 1 to 3, see, e.g., (see Grieco, 2010). However, such kind of results does not
obtain if U1 and U2 are positively correlated.
4De Paula and Tang (2012) propose a semiparametric test procedure for multiplicity of equilibria in the data under the
assumption that private information are conditionally independent.
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This paper is organized as follows. Section 2 describes the game model. Section 3 provides

characterization of BNEs and monotone pure strategy BNEs. I show that there is a unique BNE,

which has monotone pure strategies, given regressors belonging to a subset. In section 4 and 5,

I establish the identification and estimation of the structural parameters, respectively. Section 6

provides Monte Carlo experiment studies to illustrate the performance of the proposed estimator

in finite samples and Section 7 concludes. All proofs are in the appendix.

2. The Model

Consider the following 2–by–2 static game of incomplete information:

PLAYER 2

Y2 = 1 Y2 = 0

PLAYER 1 Y1 = 1 X′1β1 − α1 −U1, X′2β2 − α2 −U2 X′1β1 −U1, 0

Y1 = 0 0, X′2β2 −U2 0, 0

TABLE 1: Two–player simultaneous move game of incomplete information

where X = (X1, X2) ∈ SX ⊆ Rk1 ×Rk2 represents public information to both players. The payoff

shock Uj ∈ R (j = 1, 2) is player j’s private information, which is only observed by j, not his rival.

Yj is the choice of player j. Let U = (U1, U2) be independent of X,5 and conforms to a joint normal

distribution with unit variances and correlation parameter ρ0 ∈ [0, 1)6, which is assumed to be

common knowledge of both players. β j ∈ Rkj and αj ∈ R+ are coefficients in the payoff function

and αj measures the size of the strategic effect.7 Let θ0 =
(
α1, α2, β′1, β′2, ρ0

)′ ∈ Θ be the parameters

of interest. Throughout this paper, I use θ =
(
a1, a2, b′1, b′2, ρ

)′ to denote a generic parameter value

in the parameter space Θ ⊆ R2+k1+k2 × [0, 1].

A game and the according equilibria with the similar setup can also be found in Pesendorfer

and Schmidt-Dengler (2003) and references therein. In this incomplete information game, I adopt

the standard pure strategy BNE solution concept (see, e.g., Aumann, 1964; Harsanyi, 1967–68).

In equilibrium, player j’s strategy is a function s∗j (X, Uj), where s∗j : Rk1+k2 ×R → {0, 1} maps

all j’s information to a binary decision. Player j chooses s∗j in a way such that it maximizes

her expected payoff: choosing s∗j = 1 if and only if X′jβ j − αjE
[
s∗−j(X, U−j)|X, Uj

]
− Uj ≥ 0,

where E(s∗−j|X, Uj) is the beliefs of her rival’s move in equilibrium. In other words, fix X = x ∈

5The independence between X and U is not essential for the equilibrium analysis in Section 3.
6Aradillas-Lopez (2010) developed a semiparametric approach without a parametric specification of the distribution of U.
7αj is restricted to be nonnegative only for the brevity of notation.
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SX , the equilibrium strategy profile s∗ = {s∗1(x, ·), s∗2(x, ·)} is a fixed point solving the following

simultaneous equations system

sj(x, uj) = 1
{

x′jβ j − αjE
[
s−j(x, U−j)|Uj = uj

]
− uj ≥ 0

}
, for j = 1, 2, (1)

where 1 [·] is the indicator function. Note that I drop the conditioning variable X = x in j’s belief

term E
[
s−j(x, U−j)|Uj = uj

]
due to the independence between X and U. In equation (1), player

j’s equilibrium strategy depends on not only j’s observed state variables xj, but also rival’s state

variables x−j. This is because x−j affects player j’s expectation on her rival’s choice.

This binary game of incomplete information can be interpreted as an entry model, where two

firms simultaneously decide whether to enter a local market or not (see, e.g., Ciliberto and Tamer,

2009). Before they make their decisions, information X is disclosed publicly, and each player

observes a private payoff shock for entry profit. There are interactions between the players’ strate-

gies: αj measures the magnitude of strategic impacts. Moreover, each player’s entry profit is

parametrized by a linear sum of the publicly observed term, the private shock and the strategic

effect. Note that asymmetry in this game arises as long as X′1β1 6= X′2β2, which reflects the fact

that one player may have a commonly known advantage or disadvantage for entering this local

market.

From the above discussion, for a given realization x = (x1, x2) of public states X, a BNE is a

fixed point in the functional space. To obtain such a solution, a convenient assumption is widely

used in the literature that U1 and U2 are conditionally independent given X, which means that

an individual’s private payoff shock does not contain any additional information for the rival’s

choice. When U1 and U2 are allowed to be positively correlated, difficulty arises to characterize

each equilibrium, especially non–monotone strategy BNEs. Therefore, it is costly to know the

whole equilibria set.

3. Characterization of Equilibria Set

As a special class of pure strategy BNE, a monotone pure strategy BNE can be characterized

in a much simpler manner. Hence, it is feasible to characterize the equilibria set for some values

of public states if these realizations of public state variables permit only monotone pure strategy

BNEs, especially when the equilibrium is unique.
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Given public information X = x, a monotone pure strategy BNE can be characterized by a

vector u∗(x) = (u∗1(x), u∗2(x)) ∈ R2, such that for j = 1, 2,

s∗j (x, uj) = 1
[
uj ≤ u∗j (x)

]
, (2)

where the u∗(x) satisfies the following mutual consistency conditions

x′jβ j − αjP(U−j ≤ u∗−j(x)|Uj = uj)− uj ≥ 0⇐⇒ uj ≤ u∗j (x), (3)

for j = 1, 2. Hence, given X = x, a monotone strategy BNE obtains by solving a fixed point u∗(x)

in the vector space R2.

I now define a subsetM(θ0) of the covariate space, which depends on the underlying param-

eter value θ0, such that for any x ∈ M(θ0) all the equilibria in the game are monotone strategy

BNEs. Later, I will refine M(θ0) to a smaller subset U (θ0), in which each value of public states

will admit a unique monotone pure strategy BNE.

For j = 1, 2, let the function hj(·; θ0) : R2 → R be defined as follows:

hj(u; θ0) = uj + αjP(U−j ≤ u−j|Uj = uj).

In Definition 1 below I will define a rectangular I(x; θ0) on the support SU through a recursion

scheme, which corresponds to Aradillas-Lopez and Tamer (2008)’s “level–k rationality” — a notion

weaker than the BNE solution concept.

Definition 1. For any x ∈ SX , let V −j,1 (x; θ0) = x′jβ j − αj and V +
j,1 (x; θ0) = x′jβ j. Let further

V −j,k (x; θ0) = x′jβ j − αjP
(

U−j ≤ V +
−j,k−1(x; θ0)|Uj = V −j,k−1(x; θ0)

)
,

V +
j,k (x; θ0) = x′jβ j − αjP

(
U−j ≤ V −−j,k−1(x; θ0)|Uj = V +

j,k−1(x; θ0)
)

.

Let V −j (x; θ0) = limk→∞ V −j,k (x; θ0) and V +
j (x; θ0) = limk→∞ V +

j,k (x; θ0). Moreover, define Ij,k(x; θ0) =[
V −j,k (x; θ0), V +

j,k (x; θ0)
]
, Ij(x; θ0) =

[
V −j (x; θ0), V +

j (x; θ0)
]
, and I(x; θ0) = I1(x; θ0)× I2(x; θ0).

Throughout the following analysis, I will use V −j,k (x), V +
j,k (x), V −j (x) and V +

j (x) in lieu of

V −j,k (x; θ0), V +
j,k (x; θ0), V −j (x; θ0) and V +

j (x; θ0), respectively, to simplify my notation and empha-

size their dependence on x. Noted that V −j (x) and V −j (x; θ0) are well–defined as the limits of se-

quences, because one can verify that both {V −j,k (x)}∞
k=1 and {V +

j,k (x)}∞
k=1 are monotone sequences.
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It should also be noted that V −j (x) and V +
j (x) satisfy the following conditions:

V −j (x) = x′jβ j − αjP
(

U−j ≤ V +
−j(x)|Uj = V −j (x)

)
,

V +
j (x) = x′jβ j − αjP

(
U−j ≤ V −−j(x)|Uj = V +

j (x)
)

.

By definition, there is Ij,1(x; θ0) ⊇ · · · ⊇ Ij,k(x; θ0) ⊇ Ij(x; θ0) for all k ∈N.

For each k ∈N, let

Mk(θ0) =
{

x ∈ SX : ∂hj(u; θ0)/∂uj ≥ 0 for all u ∈ I1,k(x; θ0)× I2,k(x; θ0), j = 1, 2
}

and

M(θ0) ≡M∞(θ0) =
{

x ∈ SX : ∂hj(u; θ0)/∂uj ≥ 0 for all u ∈ I(x; θ0), j = 1, 2
}

.

By definition, {Mk(θ0)}∞
k=1 is a monotone increasing sequence of subsets on the support SX and

M(θ0) is the limit of the sequence.

The definition of Mk(θ0) is guided by Reny (2011), Theorem 4.1: hj is required to be a non–

decreasing function of uj only on the support Ik(x; θ0), instead of the whole support R2. This

condition is weaker than the single crossing condition (SCC, see Athey, 2001), a sufficient condition

for the existence of monotone pure strategy BNE. To see this, for instance, let k = 1. When

uj ≤ x′jβ j− αj (or uj ≥ x′jβ j), player j’s optimal decision is to choose s∗j (x, uj) = 1 (or s∗j (x, uj) = 0),

which is irrelevant of the rival’s strategy. Hence, the fact that hj is non–decreasing within the

interval Ij,1(x; θ0) guarantees a monotone best response to any rival’s strategy. This argument can

be generalized to k = 2, 3, · · · using “level–k rationality” in Aradillas-Lopez and Tamer (2008):

in any equilibrium solution of BNE, it is for sure that player j’s equilibrium response is: for any

k ∈ N, s∗j (x, uj) = 1 if uj < V −j,k (x); s∗j (x, uj) = 0 if uj > V +
j,k (x). Theorem 1 summarizes the

discussion above.

Theorem 1. Suppose X = x ∈ M(θ0). All pure strategy BNEs in the game with X = x are monotone

pure strategy BNEs. Moreover, for any monotone pure strategy BNE, w.l.o.g., characterized by u∗(x) ∈ R2,

there is u∗(x) ∈ I(x; θ0).

Proof. See Appendix A.1 �

Note that, if x ∈ M(θ0), the expression x′jβ j − αjP(U−j ≤ u∗−j|Uj = uj)− uj is a continuously

decreasing function of uj on the support I(x; θ0). Thus, that condition (3) is equivalent to

x′jβ j − αjP
(
U−j ≤ u∗−j(x)|Uj = u∗j (x)

)
− u∗j (x) = 0. (4)
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Hence, for X = x ∈ M(θ0), the set of equilibria obtains by solving equations (4). However, there

can be multiple monotone pure strategy BNE’s here, like in Bresnahan and Reiss (1990, 1991a),

and Tamer (2003). Instead of imposing some equilibrium selection mechanism, I characterize a

subset U (θ0) ofM(θ0), which admits a unique monotone pure strategy BNE.8

For each k ∈N, let

Uk(θ0) = {x ∈ SX : ∂hj(u; θ0)/∂uj > ∂hj(u; θ0)/∂u−j, a.e. ∀ u ∈ I1,k(x; θ0)× I2,k(x; θ0), j = 1, 2}

and

U (θ0) ≡ U∞(θ0) = {x ∈ SX : ∂hj(u; θ0)/∂uj > ∂hj(u; θ0)/∂u−j a.e. ∀ u ∈ I(x; θ0), j = 1, 2}.

Similar to {Mk(θ0)}∞
k=1, the sequence of subsets {Uk(θ0)}∞

k=1 is monotone increasing on the sup-

port SX and U (θ0) is the limit of the sequence. It should also be noted that there is Uk(θ0) ⊆

Mk(θ0) due to the fact ∂hj(u; θ0)/∂u−j ≥ 0 a.s..

Theorem 2. Suppose X = x ∈ U (θ0). The game with X = x has a unique BNE, which is a monotone

pure strategy BNE.

Proof. See Appendix A.2. �

By the assumption on the distribution of U, the conditions to define U (θ0) can expressed ex-

plicitly, i.e., x ∈ U (θ0) if and only if

1−
(1 + ρ0)αj√
2π(1− ρ2

0)
exp

{
− t2

2(1− ρ2
0)

}
≥ 0, (5)

holds for all V −−j(x)− ρ0V
+

j (x) ≤ t ≤ V +
−j(x)− ρ0V

−
j (x) and j = 1, 2. Thus, if the model parame-

ters satisfy
(1+ρ0)αj√
2π(1−ρ2

0)
≤ 1 for j = 1, 2, then equation (5) always holds, i.e., U (θ0) = SX . Moreover,

one can also show that a sufficient condition for x ∈ U (θ0) is: either the inequalities

V −1 (x) ≥ ∆(θ0), and V +
2 (x) ≤ −∆(θ0)

or

V −1 (x) ≤ −∆(θ0), and V +
2 (x) ≥ ∆(θ0)

8It should be noted that the multiple equilibria issue exists even if U1 and U2 are assumed to be independent. Here is a
simple example: α1 = α2 = 4, x′1β1 = x′2β2 = 2, and ρ0 = 0. In this setup, three monotone strategy BNEs can be found.
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holds, where ∆(θ0) =

√
2 1−ρ0

1+ρ0
ln
{

(1+ρ0)αmax√
2π(1−ρ2

0)
, 1
}

and αmax = max{α1, α2}. To see this, one

can show that for j = 1, 2 there is either V −−j(x) − ρ0V
+

j (x) ≥
√

2(1− ρ2
0) ln

{
(1+ρ0)αj√
2π(1−ρ2

0)
, 1
}

or

V +
−j(x)− ρ0V

−
j (x) ≤ −

√
2(1− ρ2

0) ln
{

(1+ρ0)αj√
2π(1−ρ2

0)
, 1
}

; thus equation (5) holds.

4. Identification

In the following analysis, I discuss the identification of the structural parameter θ0 in the sense

of Hurwicz (1950); Koopmans and Reiersol (1950), i.e. whether there is a unique structural pa-

rameter θ0 ∈ Θ to rationalize the conditional distribution of Y given X. Let Θ = B× [0, α]2× [0, ρ]

be a compact space where B ⊆ Rk1+k2 . Suppose that the subset U (θ0) is known and has a

strictly positive probability measure.9 Then, θ0 is identified. To see this, let one first condition on

X = x ∈ U (θ0). Then, there is

E(Yj|X = x) = Φ(u∗j (x)),

where Φ is the c.d.f. of the standard normal distribution. Therefore u∗j (x) = Φ−1 (E(Yj|X = x)
)
.

Further, arbitrarily pick (p1, p2) ∈ SE(Y1|X),E(Y2|X)|X∈U (θ0)
. It follows that

E [Y1Y2|E(Y1|X) = p1, E(Y2|X) = p2, X ∈ U (θ0)] = P
[
U1 ≤ Φ−1(p1); U2 ≤ Φ−1(p2)

]
,

from which ρ0 is identified. This is because

∂E [Y1Y2|E(Y1|X) = p1, E(Y2|X) = p2, X ∈ U (θ0)]

∂p1
=

∂P [Φ(U1) ≤ p1; Φ(U2) ≤ p2]

∂p1

= P [Φ(U2) ≤ p2|Φ(U1) = p1] = Φ

Φ−1(p2)− ρ0Φ−1(p1)√
1− ρ2

0

 , (6)

in which the second equality follows Darsow, Nguyen, and Olsen (1992). Therefore,

Φ−1(p2)− ρ0Φ−1(p1)√
1− ρ2

0

= Φ−1
(

∂E [Y1Y2|E(Y1|X) = p1, E(Y2|X) = p2, X ∈ U (θ0)]

∂p1

)
. (7)

Note that the RHS of equation (7) is known from the conditional distribution of Y given X.10

9For example, when 1+ρ
1−ρ ×

α2

2π ≤ 1, U (θ0) = Rk1+k2 .
10It should be noted that the differentiability of E [Y1Y2|E(Y1|X) = p1, E(Y2|X) = p2, X ∈ U (θ0)] involves a full rank con-
dition on the support of SE(Y1 |X),E(Y2 |X)|X∈U (θ0)

, which is testable.
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It is straightforward that the term ρ0
/√

1− ρ2
0 is identified from equation (7) by taking further

derivative with respect to p1 on both sides of the equation. Since ρ0 and ρ0/
√

1− ρ2
0 are one to

one map, then ρ0 is also identified. It should also be noted that the identification of ρ0 allows a

nonparametric setup for the payoff functions as long as U (θ0) is known.

Moreover, given the knowledge of ρ0 and u∗j (X), (αj, β j) can be identified by equation (4), i.e.

X′jβ j − αjΦ

u∗−j(X)− ρ0u∗j (X)√
1− ρ2

0

− u∗j (X) = 0

under an additional rank condition, i.e. the matrix E(Z′jZj) has a full rank for which Zj =[
X′j, Φ

(
u∗−j(X)−ρ0u∗j (X)√

1−ρ2
0

)]′
. It should be noted that the full rank condition is a testable restriction

given the identification of ρ0 and u∗j (·).

An alternative identification strategy for θ0 is to use information criteria, which is less construc-

tive: conditioning on X ∈ U (θ0), suppose that the information matrix is invertible;11 then

θ0 = argmaxθ∈Θ E [1 {X ∈ U (θ0)} × ln Pθ(Y|X)] ,

where

Pθ(Y = y|X = x) =



Pθ(U1 ≤ u∗1(x, θ), U2 ≤ u∗2(x, θ)) if y = (1, 1),

Pθ(U1 > u∗1(x, θ), U2 ≤ u∗2(x, θ)) if y = (0, 1),

Pθ(U1 ≤ u∗1(x, θ), U2 > u∗2(x, θ)) if y = (1, 0),

Pθ(U1 > u∗1(x, θ), U2 > u∗2(x, θ)) if y = (0, 0).

For a given θ, u∗(x, θ) = (u∗1(x, θ), u∗2(x, θ)) obtains by the following simultaneous equations: for

j = 1, 2,12

x′jbj − ajΦ

(
u∗−j(X)− ρu∗j (X)√

1− ρ2

)
− u∗j = 0.

4.1. Unknown U (θ0). The difficulty arises when U (θ0) is unknown, which is because of the de-

pendence of U (θ0) on the underlying parameter θ0. As a consequence, the identification of θ0

hinges on a fixed point argument: Let ψ : B → Θ, where B ≡ {U (θ) : θ ∈ Θ}, be the mapping

which corresponds to the identification approach discussed above. Thus, θ0 = ψ(U (θ0)), from

which θ0 is identified under conditions ensuring that it is the unique fixed point of the equation.

11The invertibility of the information matrix could be satisfied if (i) P
[
u∗(X, θ) 6= u∗(X, θ0)

∣∣X ∈ U (θ0)
]
> 0 for all θ 6= θ0;

and (ii) P [X ∈ U (θ0)] > 0.
12When θ 6= θ0, there could be multiple solutions to equations (4) even for x ∈ U (θ0). In this case, I can choose u∗j (x, θ) =

x′jbj as a convention.
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In this paper, however, I propose an alternative identification strategy which is constructive

when U (θ0) is unknown. The procedure takes two steps: First, I identify a subset ΘI ⊆ Θ, which

contains θ0 and is small enough such that C(ΘI) ≡
⋂

θ∈ΘI
U (θ) has a strictly positive probability

measure. Because C(ΘI) is a subset of U (θ0), thus θ0 is identified by replacing U (θ0) with C(ΘI).13

The above discussion is summarized in the next theorem.

Theorem 3. Suppose θ0 ∈ ΘI ⊆ Θ and P [X ∈ C(ΘI)] > 0. Moreover, if (i) conditional on X ∈ C(ΘI),

E(Y|X) has a non–degenerated continuous support in [0, 1]2; and (ii) E
[
1 {X ∈ C(ΘI)} Z′jZj

]
has a full

rank for j = 1, 2, then θ0 is identified.

By a similar argument to the identification analysis using U (θ0) in the beginning of this section,

the proof of Theorem 3 is straightforward and therefore omitted.

4.2. Finding ΘI and “level–∞ rationality”. It is crucial to construct the subset ΘI by which θ0 is

partially identified. Aradillas-Lopez and Tamer (2008) proposed a novel approach to identify a set

containing θ0 by using the restrictions called “level–k rationality” (k → ∞), which are implied by

the BNE solution concept.

Under the current setup, the constraints of “level–1 rationality” can be derived as follows:

consider the equilibrium response for player j = 1, 2,

Yj = 1
[

X′jβ j − αjE(Y−j|X, Uj)−Uj ≥ 0
]

. (8)

Because the belief term 0 ≤ E(Y−j|X, Uj) ≤ 1, thus, no matter how his rival behaves, player j’s

equilibrium response can always be bounded in the following way:

1
[
V −j,1 (X)−Uj ≥ 0

]
≤ Yj ≤ 1

[
V +

j,1 (X)−Uj ≥ 0
]

. (9)

Therefore, Yj = 1 if Uj < V −j,1 (X), and Yj = 0 if Uj > V +
j,1 (X), which are the restrictions derived

from “level–1 rationality”. Note that “level–1 rationality” is silent about the rational response of

Yj when V −j,1 (X) ≤ Uj ≤ V +
j,1 (X).

The restrictions of the “level–2 rationality” can be derived similarly: from equation (9) we have

P
(
V −−j,1(X)−U−j ≥ 0

∣∣X, Uj

)
≤ E(Y−j|X, Uj) ≤ P

(
V +
−j,1(X)−U−j ≥ 0|X, Uj

)
.

13Aradillas-Lopez (2010) also suggests to focus a subset of observables where BNE is likely to be unique.
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Thus for V −j,1 (X) ≤ Uj ≤ V +
j,1 (X), it follows that

P
(
V −−j,1(X)−U−j ≥ 0

∣∣X, Uj = V +
j,1 (X)

)
≤ E(Y−j|X, Uj) ≤ P

(
V +
−j,1(X)−U−j ≥ 0|X, Uj = V −j,1 (X)

)
.

Then, by equation (8) and the fact that αj ≥ 0, it follows that

1
[
V −j,2 (X)−Uj ≥ 0

]
≤ Yj ≤ 1

[
V +

j,2 (X)−Uj ≥ 0
]

. (10)

Therefore, Yj = 1 if Uj < V −j,2 (X), and Yj = 0 if Uj > V +
j,2 (X). Note that V −j,1 (X) ≤ V −j,2 (X) ≤

V +
j,2 (X) ≤ V +

j,1 (X), which means that higher level of rationality provides additional restrictions.

Moreover, applying “level–k rationality” for k ∈N∪ {∞} recursively, there is

1
[
V −j,k (X)−Uj ≥ 0

]
≤ Yj ≤ 1

[
V +

j,k (X)−Uj ≥ 0
]

. (11)

Now I am ready to define ΘI : let θ = (a1, a2, b′1, b′2, ρ)′ be a generic parameter value in Θ and

ΘI = {θ ∈ Θ : Φ
(
V −j (x; θ)

)
≤ E(Yj|X = x) ≤ Φ

(
V +

j (x; θ)
)
, ∀x ∈ SX , j = 1, 2}.

By definition, θ0 ∈ ΘI . Replacing V −j (x; θ) and V +
j (x; θ) respectively with V −j,k (x; θ) and V +

j,k (x; θ)

in the definition of ΘI , one can define ΘI,k in a similar manner.

4.3. Rank condition and the support of covariates. Essentially, P[X ∈ C(ΘI)] > 0 is a rank

condition, which requires the support of X to be rich enough. To characterize the subset C(ΘI),

however, the difficulties arises as follows: The distribution of Y given X might not be well defined

due to the issue multiple equilibria (see the discussion of “incompleteness” in Tamer, 2003). In

another word, the subset ΘI can not be characterized without the knowledge of the equilibrium

selection mechanism for the multiple equilibria.

To answer the important question that how large the set C(ΘI) is, I derive a subset of it,

which can be characterized simply. Let Θ be compact, and ᾱ and ρ be the upper bounds for αj

and ρ, respectively. Let further ∆∗(ρ) =

√
2 1−ρ

1+ρ ln
{

(1+ρ)α√
2π(1−ρ2)

, 1
}

and γ∗(ρ) = −∆∗(ρ) + α ×

Φ
(√

1+ρ
1−ρ ∆∗(ρ)

)
. Moreover, I define γ∗0 = supρ∈[0,ρ] γ∗(ρ) and

Π =
{

x ∈ SX : E(Y1|X = x) ≥ Φ(γ∗0); E(Y2|X = x) ≤ Φ(−γ∗0)
}

⋃{
x ∈ SX : E(Y1|X = x) ≤ Φ(−γ∗0); E(Y2|X = x) ≥ Φ(γ∗0)

}
.
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Theorem 4. By definition, Π ⊆ C(ΘI).

Proof. See Appendix A.3. �

By Theorem 4, the rank condition for C(ΘI) will be satisfied if one has P(X ∈ Π) > 0. Because

x′jβ j − αj ≤ V −j (x) ≤ V +
j (x) ≤ x′jβ j, it could be shown using equation (11) that if x′1β1 − α1 ≥

γ∗0 ; x′2β2 ≤ −γ∗0 (or x′1β1 ≤ −γ∗0 ; x′2β2 − α2 ≥ γ∗0 ), then E(Y1|X = x) ≥ Φ(γ∗0) and E(Y2|X = x) ≤

Φ(−γ∗0), which provides x ∈ Π. This means that a large support of (X′1β1, X′2β2) is sufficient for

P(X ∈ Π) > 0. Figure 1 provides a numerical example in which Π is described by the shadow

areas.

It should also be emphasized on that the subset Π depends on the value of α through γ∗0 . For the

compactness of Θ, ᾱ need to be ad hoc chosen reasonably large such that αj ∈ [0, ᾱ]. Larger ᾱ, more

stringent support conditions are required for the covariates X to achieve identification. If α is set

to be arbitrarily large, however, one has to assume a full support of (X′1β1, X′2β2) on R2 to ensure

the rank condition, by which the proposed identification strategy becomes an identification–at–

infinity argument, see, e.g., Tamer (2003); Bajari, Hong, Krainer, and Nekipelov (2010) for discrete

games of complete information.

Now I give a numerical discussion of choosing γ∗0 for some given α. By definition,

γ∗0 = sup
ρ∈[0,ρ]

−

√√√√1− ρ

1 + ρ
ln max

{
1 + ρ

1− ρ
× α2

2π
, 1

}
+ α×Φ


√√√√ln max

{
1 + ρ

1− ρ
× α2

2π
, 1

} .

Since it can be shown that the function g(t) ≡ −
√

t ln max
{

α2

2πt , 1
}
+ α×Φ

(√
ln max

{
α2

2πt , 1
})

is (weakly) monotone decreasing in t ∈ [0, 1]. Therefore, given ρ ∈ [0, ρ̄] in the parameter space Θ,

it follows that γ∗0 = γ∗(ρ). Further, one can show that α/2 ≤ γ∗0 ≤ α.14 It is also understood that
1+ρ
1−ρ ×

α2

2π > 1, otherwise U (θ0) is known as the full support.

Table 1 provides γ∗0 for different combinations of α and ρ. It should be noted that the standard

deviation of Ui has been normalize to be 1. Hence, the value of α imposes an upper bound for the

strategic component at the scale of the error’s standard deviation.

Figure 1 illustrates the size of Π in the space of covariates in a simple setup for α = 1.5 and 2,

respectively, and ρ = 0.6. The payoff functions for both players are identical: Xjβ− αY−j −Uj in

which β = 1 and α = 1.5 are fixed and SX ⊆ R2; moreover, the correlations coefficient parameter

ρ0 is 0.3 and 0.5, respectively. The subsets Π are represented by the shadow areas in figure 1.

14Note that γ∗(ρ) is approaching to α as ρ→ 1.
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Table 1. γ∗0 for different values of α

α = 1 1.5 2 2.5 3 4 · · ·
ρ = 0 — — — — 1.5772 2.3659 · · ·

0.4 — — 1.0589 1.4500 1.8729 2.7623 · · ·
0.5 — 0.7537 1.1144 1.5266 1.9620 2.8690 · · ·
0.6 — 0.7886 1.1830 1.6125 2.0597 2.9830 · · ·
0.7 — 0.8464 1.2668 1.7120 2.1703 3.1091 · · ·
0.8 0.5257 0.9299 1.3732 1.8331 2.3023 3.2565 · · ·
0.9 0.6123 1.0577 1.5234 1.9986 2.4793 3.4504 · · ·
' 1 1.0000 1.5000 2.0000 2.5000 3.0000 4.0000 · · ·

“— ” refers to the degenerated case: 1+ρ
1−ρ ×

α2

2π ≤ 1
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Figure 1. Examples of Π with α = 1.5 (left) and 2 (right); ρ0 = 0.3 (upper) and 0.5 (down)

5. Outline of Estimation Strategy

The estimation approach is naturally suggested by the identification strategy in Section 4. Sup-

pose that {Xi, Yi}n
i=1 is an i.i.d. random sample of size n, where Xi = (X′1i, X′2i)

′ and Yi = (Y1i, Y2i)
′.
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The estimation takes two steps. I now proceeds with introducing my first–step estimator:

θ̃ = arg max
θ∈Θ

1
n

n

∑
i=1

1
[

Xi ∈ Π̃)
]

log Pθ(Yi|Xi), (12)

where Pθ is the conditional probability of Y given X defined in section 4, and Π̃ is a consistent

estimator of Π such that 1(X ∈ Π̃)− 1(X ∈ Π)
p→ 0. Note that a uniformly consistent estimator

of E(Yj|X) is sufficient to define 1(X ∈ Π̃), i.e. if X is continuously distributed,

1(Xi ∈ Π̃) ≡ 1

{
∑
` 6=i

[Y1` −Φ(γ∗0)]K
(

X` − Xi
h

)
≥ 0

}
× 1

{
∑
` 6=i

[Y2` −Φ(−γ∗0)]K
(

X` − Xi
h

)
≤ 0

}

+ 1

{
∑
` 6=i

[Y1` −Φ(−γ∗0)]K
(

X` − Xi
h

)
≤ 0

}
× 1

{
∑
` 6=i

[Y2` −Φ(γ∗0)]K
(

X` − Xi
h

)
≥ 0

}
,

where K and h are the kernel function and the smoothing bandwidth, respectively. Under addi-

tional conditions, which are standard in the literature, it could be shown that 1(X ∈ Π̃)− 1(X ∈

Π)
p→ 0. If X is discrete, 1(X ∈ Π̃) can also be defined similarly by plugging into a nonparametic

estimator of E(Yj|X), but one needs to rule out the case that the distribution of X has a mass point

on the boundary of Π.

Assumption A. Let 1(X ∈ Π̃)− 1(X ∈ Π)
p→ 0.

Assumption B. Let SX be compact and P(X ∈ Π) > 0.

Assumption C. Let Θ be compact and E
{

supθ∈Θ

∣∣ln Pθ (Y|X)
∣∣1+ε

}
< ∞ for some ε > 0.

Assumption A is a high level condition but has been well studied in the nonparametric es-

timation literature and only for the brevity of presentation. The first half of assumption B is

standard in the literature and the second half constitutes a rank condition as discussed in Section

4.3. Assumption C is slightly stronger than the condition E
{

supθ∈Θ

∣∣ln Pθ (Y|X)
∣∣} < ∞, which is

a standard assumption in MLE literature, e.g. Newey and McFadden (1986).

Theorem 5. Suppose assumptions A through C hold. Then θ̃
p→ θ0.

Proof. See Appendix A.4. �

The consistent estimator θ̃ allows me to exploit information further in a different subset of the

data, i.e., V(θ, δ), which is a subset of U (θ̃) and satisfies regularity conditions. For fixed δ > 0, let
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γ(θ) = −∆(θ) + amax ×Φ
(√

1+ρ
1−ρ ∆(θ)

)
15 and

V(θ, δ) =
{

x ∈ SX : x′1b1 ≥ γ(θ) + δ(1 + ‖x‖); x′2b2 − a2 ≤ −γ(θ)− δ(1 + ‖x‖)
}

⋃ {
x ∈ SX : x′1b1 − a1 ≤ −γ(θ)− δ(1 + ‖x‖); x′2b2 ≥ γ(θ) + δ(1 + ‖x‖)

}
.

It can be shown that V(θ, δ) ⊆ U (θ) for all θ ∈ Θ and for any fixed δ ∈ R+, {V(θ, δ) : θ ∈ Θ} is a

VC class of sets.

Lemma 1. For fixed δ > 0, V(θ, δ) ⊆ U (θ).

Proof. See Appendix A.5. �

Lemma 2. Fix δ ∈ R+. The collection {V(θ, δ) : θ ∈ Θ} is a VC class of sets.

Proof. See Appendix A.6. �

By definition, there exists εδ > 0 such that for any ‖θ − θ0‖ ≤ εδ, there is V(θ, δ) ⊆ V(θ0, 0) ⊆

U (θ0). Thus, by consistency of θ̃, P
[
V(θ̃, δ) ⊆ U (θ0)

]
→ 1 as n goes to infinity. Thus, my second–

step estimator is defined as

θ̂ = arg max
θ∈Θ

1
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
]

log Pθ(Yi|Xi). (13)

Assumption D. Let θ0 be an interior point of Θ.

Assumption D is standard in the literature for MLE, see, e.g. Newey and McFadden (1986).

Let X[k]
j be the k–th variable in regressors Xj. Similar notation for β

[k]
j .

Assumption E. For j = 1, 2, X[1]
j is a continuous argument and β

[1]
j 6= 0. Let X j be all the X variables

without X[1]
j , i.e., X j = (X[2]

j , ..., X
[kj ]

j ; X−j). Assume further E

[
supt f

X[1]
j |X j

(t|X j)× ‖X j‖
]
< ∞, where

f
X[1]

j |X j
is the conditional probability density function of X[1]

j given X j.

The first half of Assumption E is also used in Manski (1985). Assumption E guarantees

E
∣∣1 [Xi ∈ V(θ, 0)]− 1 [Xi ∈ V(θ0, 0)]

∣∣ = O (‖θ − θ0‖) for θ in a small neighborhood of θ0.

Further, let s(y, x; θ) be the score function, i.e., s(y, x, θ) = ∂ log Pθ(y|x)/∂θ.

Theorem 6. Suppose assumptions A through E hold and θ̃
p→ θ0. Then θ̂

p−→ θ0. Moreover,

√
n(θ̂ − θ0)

d→ N(0, V−1
δ ),

15Note that γ(θ)→ amax as ρ→ 1. Similar to the discussion of γ∗(ρ) in Section 4.3, one can show that γ(θ) is an increasing
function in ρ and amax/2 ≤ γ(θ) ≤ amax.
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where Vδ = E{1 [X ∈ V(θ0, δ)]× s(Y, X; θ0)s′(Y, X; θ0)}.

Proof. See Appendix A.7 �

Similar to Chernozhukov and Hong (2002), one can repeat above second–step estimation pro-

cedure one or more times, using sample V(θ̂, δn) in place of V(θ̃, δ), where δn is a deterministic

sequence with δn ↓ 0 (slower than n−1/2). The updated estimator will achieve greater efficiency.16

6. Monte Carlo Studies

In this section, I use numerical experiments to illustrate the performance of the proposed esti-

mator and also that ignoring the correlation between the private information results in inconsistent

estimates and possibly misleading inference. In particular, I investigate the performance of the

pseudo–MLE when the players’ types are misspecified to be independent.

If U1 and U2 are independent, a two–step MLE would be based on the following model,

Yj = 1
[

X′jβ j − αjP(Y−j = 1|X)−Uj ≥ 0
]

,

in which P(Y−j = 1|X) can be nonparametrically estimated in the first stage.17 It is a misspecified

model, since P(Y−j|X) 6= P(Y−j|X, Uj) in general.

I evaluate the performance of my proposed estimator and the two–step pseudo–MLE in the

following examples. I now specify the distribution of X = (X1, X2) ∈ R2 on a compact support as

follows: let Z1 and Z2 be two independent random variables with uniform distribution on [0, 2.5];

let further X1 = Z1 − Z2 and X2 = 2− Z2. Note that the rank condition in Theorem 3 is satisfied

under such a specification. Let β1 = β2 = 1, α1 = α2 = 1.5. Let further ρ0 = 0.3 and ρ0 = 0.5 in

two experiments, respectively. Moreover, I choose sample size n = 1000, 3000, 5000.

To generate observables {(Xi, Yi) : i = 1, · · · , n}, I need to solve equilibrium for each observa-

tion. If there are multiple monotone pure strategy BNEs, or no pure monotone pure strategy BNE

exists, then the following equation system of (u∗1 , u∗2) would have multiple solutions:

X1β1 − α1Φ

u∗2 − ρ0u∗1√
1− ρ2

0

 = u∗1

X2β2 − α2Φ

u∗1 − ρ0u∗2√
1− ρ2

0

 = u∗2 .

16Such a result and other details for the asymptotic properties are available upon request to the author.
17In my experiments, I actually compute the term P(Y−j = 1|X) in the first stage, instead of estimating it.
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Denote K(x) to be the number of solutions and (u∗1,k(x, θ0), u∗1,k(x, θ0)) to be the k–th solution.

Then I use Yj = 1(Uj ≤ ū∗j (x; θ0)), where ū∗j (x, θ0) = ∑
K(x)
k=1 u∗j,k(x, θ0)/K(x), to mimic the data

generated from multiple equilibria or non–monotone–pure–strategy BNE.

Table 2 shows the composition of one random sample with ρ0 = 0.5 and N = 1000. In the

Table 2. Sample composition

Choice profile Percentage
Y = (1, 1) 6.2%
Y = (1, 0) 25.5%
Y = (0, 1) 50.8%
Y = (0, 0) 17.5%

estimation, I choose a compact parameter space: Θ = [−5, 5]2 × [0, 2]2 × [0, 0.6], for which α = 2

and ρ = 0.6. From Table 1, γ∗0 = 1.1830. For each design, I simulate R = 100 samples and

calculate summary statistics from empirical distributions of estimators from these simulations,

including mean (MEAN), median (MEDIAN), standard deviation (SD), and root of mean squared

error (RMSE). Note that RMSE is estimated using the empirical distribution of estimators and the

knowledge of the true parameters in the designs.

In the first stage estimator, E(Yi|X) is estimated using kernel method in which I employ a

standard second–order normal kernel with bandwidth h = 1.06×N−1/6. Table 3 reports summary

statistics for the first–stage estimator β̃1 and α̃1 in the setting ρ0 = 0.5.

Table 3. Finite sample behavior of β̃1 and α̃1 in the setting ρ0 = 0.5

β̃1 α̃1
N TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

1000 1.00 1.0899 1.0382 0.4108 0.4205 1.50 1.5367 1.5027 0.1777 0.1814

3000 1.00 1.0023 1.0264 0.0669 0.0707 1.50 1.5053 1.5097 0.1160 0.1161

5000 1.00 1.0118 1.0056 0.0527 0.0540 1.50 1.5120 1.5077 0.0857 0.0865

Tables 4 and 5 make a comparison the performance of the proposed estimator and the misspeci-

fied MLE using summary statistics in the setting ρ0 = 0.5. In a misspecified model, the correlation

between private information is falsely assumed away. Instead of using the usual two–stage ap-

proach, in which the first step is a nonparametric estimation of the equilibrium belief E(Y−j|X),

I adopt the true value of the equilibrium belief E(Y−j|X) for the second–stage Probit to avoid the

finite sample bias from the nonparametric estimation, which will conceivably improve the perfor-

mance of the final estimator of (αj.β j). The summary statistics suggest that misspecified MLE are
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inconsistent estimators for both α1 and β1. In contrast, the proposed estimator converges in both

bias and variance as the sample size increases.

Table 4. Proposed estimator β̂1 and misspecified MLE for β1 in the setting ρ0 = 0.5

Proposed estimator β̂1 Misspecified MLE
N TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

1000 1.00 1.0019 0.9939 0.0837 0.0838 1.00 1.1276 1.1327 0.0792 0.1502

3000 1.00 1.0032 0.9976 0.0531 0.0532 1.00 1.1156 1.1119 0.0459 0.1243

5000 1.00 1.0041 1.0059 0.0361 0.0363 1.00 1.1164 1.1135 0.0349 0.1215

Table 5. Proposed estimator α̂1 and misspecified MLE for α1 in the setting ρ0 = 0.5

N Proposed estimator α̂1 Misspecified MLE
TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

1000 1.50 1.5444 1.5214 0.1559 0.1621 1.50 1.7509 1.7339 0.1151 0.2760

3000 1.50 1.5099 1.4998 0.0848 0.0854 1.50 1.7453 1.7514 0.0731 0.2559

5000 1.50 1.5074 1.4990 0.0613 0.0618 1.50 1.7472 1.7466 0.0544 0.2531

The proposed method also estimates the correlation coefficient parameter ρ0. Table 6 reports

summary statistics for ρ̂ in both settings ρ0 = 0.3 and ρ0 = 0.5. There is also evidence for im-

provement of the estimator in terms of each of the summary statistics as the sample size increases.

Table 6. Finite sample behavior of ρ̂

N TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

1000 0.30 0.3644 0.3500 0.1797 0.1916 0.50 0.5101 0.6000 0.1396 0.1399

3000 0.30 0.3122 0.3050 0.1002 0.1009 0.50 0.5063 0.5100 0.0906 0.0908

5000 0.30 0.2975 0.3000 0.0700 0.0701 0.50 0.5048 0.5000 0.0711 0.0713

7. Conclusion

It is worth emphasizing that the approach established in this paper hinges crucially on two

features of the game model: first, there is no unobserved complete information structural term in

the payoff functions.18 When there are payoff variables (V) that are observed by both players but

not by researchers, the proposed approach does not work. Additional model restrictions would

be necessary such that one could obtain E(Y|X, V) from inverting E(Y|X).

Second, the proposed approach does not naturally extend to binary games with more than two

players. This is due to the issue of multiple equilibria, which generally exist in a large subset

18A model featured with unobserved heterogeneity and independent private information also generates dependence
among players’ choices conditional on covariates, see Grieco (2010).



20

of the covariate space when the number of players I ≥ 3. Moreover, the way I construct Π is

to choose a small choice probability for one player and a large one for the other. When there

are more than two players, it is impossible to choose covariates in such a way that each player’s

choice’s probability belongs to different categories (“small” or “large” probability).

It should also be noted that the proposed method could be generalized to a discrete game with

ordered multiple choices, but not multinomial games (for an illustration of multinomial game,

see, e.g. Bajari, Hong, Krainer, and Nekipelov, 2010). When the error term is a multidimensional

random vector rather than a scale, difficulties arise to characterize monotone pure strategy BNEs.

Finally, the joint normal distribution of private information is not essential to the proposed

method, especially for the marginal normal distribution. See Appendix B for a detailed discussion.
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Appendix A.

Let B be the collection of Boreal subsets in R. For any x ∈ SX , let further

Kj(x) = {B ∈ B : (−∞, V −j (x)] ⊆ B and [V +
j (x),+∞) ∩ B = ∅}.

Note that by level–k rationality with k = ∞, player j’s equilibrium response must satisfy: Yj = 1 for

Uj ≤ V −j (x) and Yj = 0 for Uj ≥ V +
j (x) (for a detailed argument, see the discussion in Section

4.2.) Hence, I can restrict my attention to the strategy profiles which is defined as

s1(x, u1) = 1(u1 ∈ A1), s2(x, u2) = 1(u2 ∈ A2)

where (A1,A2) ∈ K1(x)×K2(x).

Lemma 3. Suppose X = x. Suppose for any given (A1,A2) ∈ K1(x) × K2(x) and for j = 1, 2, the

function uj + αjP(U−j ∈ A−j|Uj = uj) is an increasing function of uj ∈ Ij(xj; θ0). Then conditional on

X = x, all pure strategy BNEs in this game are monotone strategy BNEs.

Proof. Fix x. Suppose a strategy profile {s∗1(x, ·), s∗2(x, ·)} is a pure strategy BNE. Then there exists

(A∗1 ,A∗2) ∈ K1(x) × K2(x), such that s∗j (x, uj) = 1(uj ∈ A∗j ) and {s∗1(x, ·), s∗2(x, ·)} satisfies the

best response equations (1). Because

x′jβ j − αjP
[
s∗−j(x, U−j) = 1|Uj = uj

]
− uj = x′jβ j − αjP

(
U−j ∈ A∗−j|Uj = uj

)
− uj,

which is a decreasing function of uj. Then there exists a u∗j (x) such that equations (1) can be

represented as s∗j (x, uj) = 1(uj ≤ u∗j (x)), which implies that the equilibrium strategies have to be

monotone functions. �

A.1. Proof of Theorem 1.

Proof. By Lemma 3, it suffices to show that for any (A1,A2) ∈ K1(x) × K2(x), uj + αjP(U−j ∈

A−j|Uj = uj) is an increasing function of uj in Ij(xj; θ0). W.L.O.G. I take j = 1. Let φ be the p.d.f.

of the standard normal distribution. Because

u1 + α1P(U2 ∈ A2|U1 = u1) = u1 +
α1√

1− ρ2
0

∫
A2

φ

 t− ρ0u1√
1− ρ2

0

 dt,
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which is differentiable in u1, then it is equivalent to show that for all u1 ∈ I1(x1; θ0)

1− ρ0α1

1− ρ2
0

∫
A2

φ′

 t− ρ0u1√
1− ρ2

0

 dt ≥ 0.

Since φ′(t) = −tφ(t) for any t ∈ R, then

1− ρ0α1

1− ρ2
0

∫
A2

φ′

 t− ρ0u1√
1− ρ2

0

 dt = 1 +
ρ0α1√
1− ρ2

0

∫
A2(u1)

sφ (s) ds

where A2(u1) is a linear transformation of the set A2, i.e., A2(u1) =
A2−ρ0u1√

1−ρ2
0
≡
{

t−ρ0u1√
1−ρ2

0
: t ∈ A2

}
.

Therefore, I need to show, for all u1 ∈ I1(x)

1 +
ρ0α1√

2π(1− ρ2
0)

∫
A2(u1)

s exp
(
−s2/2

)
ds ≥ 0.

Note that the LHS is minimized by choosing A2 in K2(x) such that A2(u1) contains all possible

negative elements, i.e. A∗2(u1) = (−∞, V −2 (x)] ∪ {t ∈ [V −2 (x), V +
2 (x)] : t − ρ0u1 ≤ 0}. It is

straightforward to see that there exists u2(u1) ∈ I2(x; θ0) such thatA∗2(u1) = (−∞, u2(u1)]. Hence,

it suffices to show for all (u1, u2) ∈ I(x; θ0), there is

1 +
ρ0α1

√
2π
√

1− ρ2
0

∫ u2−ρ0u1√
1−ρ2

0

−∞
s exp

(
−s2/2

)
ds ≥ 0. (14)

By the definition ofM(θ0), equation (14) is satisfied. �

A.2. Proof of Theorem 2.

Proof. Prove by contradiction. Fix x ∈ U (θ0). Suppose u∗(x) = (u∗1(x), u∗2(x)) and v∗(x) =

(v∗1(x), v∗2(x)) are the cutoff values that define two different monotone strategy BNEs. For no-

tational brevity, here I suppress the dependence on x of u∗ and v∗. By the “level–k rationality”

argument, both u∗ and v∗ belong to I(x, θ0). Define T(·) : I(x; θ0)→ I(x; θ0) as follows

x′1β1 − α1P [U2 ≤ u2|U1 = T1(u)]− T1(u) = 0,

x′2β2 − α2P [U1 ≤ u1|U2 = T2(u)]− T2(u) = 0.
(15)

Note that T(·) is well–defined, i.e., for any fixed u ∈ I(x; θ0), there exists a unique T(u) satisfying

equations (15), due to the monotonicity of αjP(U−j ≤ u−j|Uj = uj) + uj in uj on I(x; θ0). Hence,

T(u∗) = u∗, T(v∗) = v∗.
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Define a continuously differentiable function ϕ(t) by

ϕ(t) =
〈T(u∗)− T(v∗), T[v∗ + t(u∗ − v∗)]〉

‖T(u∗)− T(v∗)‖

Note that ϕ(1)− ϕ(0) = ‖T(u∗)− T(v∗)‖ = ‖u∗ − v∗‖, and also ϕ(1)− ϕ(0) =
∫ 1

0 ϕ′(t)dt. More-

over, ∀t ∈ (0, 1), we have

ϕ′(t) =
〈u∗ − v∗, T′[v∗ + t(u∗ − v∗)](u∗ − v∗)〉

‖u∗ − v∗‖

≤ ‖u
∗ − v∗‖ × ‖T′[v∗ + t(u∗ − v∗)](u∗ − v∗)‖

‖u∗ − v∗‖ < ‖u∗ − v∗‖ a.e.

The first inequality comes from the Cauchy Schwartz inequality and the last inequality is based

on the the fact that T′jj = 0 and the conditions for x ∈ U (θ0) implies that |T′12|, |T′21| < 1 for all

t ∈ (0, 1). Hence ϕ(1)− ϕ(0) =
∫ 1

0 ϕ′(t)dt < ‖u∗ − v∗‖, contradiction. �

A.3. Proof of Theorem 4.

Proof. W.L.O.G., let X = x satisfy that E(Y1|X = x) ≥ Φ(γ∗0) and E(Y2|X = x) ≤ Φ(−γ∗0). It

suffices to show that for any θ ∈ ΘI , x ∈ U (θ).

Fix θ ∈ ΘI . W.L.O.G., let 1+ρ
1−ρ ×

α2

2π > 1. By the definition of ΘI ,

Φ
(
V +

1 (x; θ)
)
≥ E(Y1|X = x) ≥ Φ(γ∗0), Φ

(
V −2 (x; θ)

)
≤ E(Y2|X = x) ≤ Φ(−γ∗0).

Since γ∗0 ≥ γ∗(ρ), it follows that

V +
1 (x; θ) ≥ γ∗(ρ), V −2 (x; θ) ≤ −γ∗(ρ). (16)

Moreover, because

V −1 (x; θ) = x′1b1 − a1Φ

(
V +

2 (x; θ)− ρV −1 (x; θ)√
1− ρ2

)
, V +

1 (x; θ) = x′1b1 − a1Φ

(
V −2 (x; θ)− ρV +

1 (x; θ)√
1− ρ2

)
,

V −2 (x; θ) = x′2b2 − a2Φ

(
V +

1 (x; θ)− ρV −2 (x; θ)√
1− ρ2

)
, V +

2 (x; θ) = x′2b2 − a2Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)
.
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It follows that

V +
1 (x; θ)− V −1 (x; θ) = a1

[
Φ

(
V +

2 (x; θ)− ρV −1 (x; θ)√
1− ρ2

)
−Φ

(
V −2 (x; θ)− ρV +

1 (x; θ)√
1− ρ2

)]
,

V +
2 (x; θ)− V −2 (x; θ) = a2

[
Φ

(
V +

1 (x; θ)− ρV −2 (x; θ)√
1− ρ2

)
−Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)]
.

Therefore, by equation (16),

V −1 (x; θ) + a1

[
Φ

(
V +

2 (x; θ)− ρV −1 (x; θ)√
1− ρ2

)
−Φ

(
V −2 (x; θ)− ρV +

1 (x; θ)√
1− ρ2

)]
≥ γ∗(ρ),

V +
2 (x; θ)− a2

[
Φ

(
V +

1 (x; θ)− ρV −2 (x; θ)√
1− ρ2

)
−Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)]
≤ −γ∗(ρ);

which implies that

V −1 (x; θ) + α×Φ

(
V +

2 (x; θ)− ρV −1 (x; θ)√
1− ρ2

)
> γ∗(ρ), (17)

V +
2 (x; θ)− α×

[
1−Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)]
< −γ∗(ρ). (18)

Thus, there exists some ε > 0 such that for γ∗ε (ρ) = γ∗(θ) + ε,

V −1 (x; θ) + α×Φ

(
V +

2 (x; θ)− ρV −1 (x; θ)√
1− ρ2

)
≥ γ∗ε (ρ),

V +
2 (x; θ)− α×

[
1−Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)]
≤ −γ∗ε (ρ).

Moreover, I use a recursive approach to obtain bounds for V −1 (x; θ) and V +
2 (x; θ). Define

`−1,1(θ) ≡ γ∗ε (ρ) − α, `+2,1(θ) ≡ −γ∗ε (ρ) + α and `−1,k(θ) = γ∗ε (ρ) − α × Φ
(

`+2,k−1(θ)−ρ`−1,k−1(θ)√
1−ρ2

)
and

`+2,k(θ) = −γ∗ε (ρ) + α ×
[

1−Φ
(

`−1,k−1(θ)−ρ`+2,k−1(θ)√
1−ρ2

)]
. Note that {`−1,k(θ)}k≥1 is a decreasing se-

quence and {`+2,k(θ)}k≥1 is increasing. Define `−1 (θ) = limk `
−
1,k(θ) and `+2 (θ) = limk `

+
2,k(θ). By

equation (17), V −1 (x; θ) ≥ `−1,1(θ) and V +
2 (x; θ) ≤ `+2,1(θ), which further imply that V −1 (x; θ) ≥

`−1,2(θ) and V +
2 (x; θ) ≤ `+2,2(θ), and so on and so forth. Thus V −1 (x; θ) ≥ `−1,k(θ) and V +

2 (x; θ) ≤

`+2,k(θ) for all k ∈N. In the limit, there is V −1 (x; θ) ≥ `−1 (θ) and V +
2 (x; θ) ≤ `+2 (θ).

Next I will solve bounds for `−1 (θ) and `+2 (θ). Note that `−1,1(θ) = −`+2,1(θ), which implies

`−1,2(θ) = −`+2,2(θ), and so on and so forth. Thus `−1 (θ) = −`+2 (θ). Therefore, `−1 (θ) solves the

following equation: t + αΦ
(
−
√

1+ρ
1−ρ × t

)
= γ∗ε (ρ). It is the smallest solution if there are multiple
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of them. Because 1+ρ
1−ρ ×

α2

2π > 1, the function g(t) ≡ t + αΦ
(
−
√

1+ρ
1−ρ × t

)
is (locally) maximized

and minimized at t = ∆∗(ρ) and t = −∆∗(ρ), respectively, where ∆∗(ρ) =
√

1−ρ
1+ρ ln

(
1+ρ
1−ρ ×

α2

2π

)
.

By the shape of g(·), the equation t + αΦ
(
−
√

1+ρ
1−ρ × t

)
= γ∗ε (ρ) has a unique solution which is

larger than ∆∗(ρ), i.e. `−1 (θ) ≥ ∆∗(ρ).

Therefore, we obtain bounds for V −1 (x; θ) and V +
2 (x; θ)

V −1 (x; θ) ≥ ∆∗(ρ) ≥ ∆(θ), V +
2 (x; θ) ≤ −∆∗(ρ) ≤ −∆(θ).

By Theorem 2, x ∈ U (θ). Because θ is arbitrarily chosen, then x ∈ C(ΘI). �

A.4. Proof of Theorem 5.

Proof. Let Ln(θ) =
1
n ∑n

i=1 1 [Xi ∈ Π)] log Pθ(Yi|Xi) and Gn(θ) =
1
n ∑n

i=1 1
[

Xi ∈ Π̃)
]

log Pθ(Yi|Xi).

By Newey and McFadden (1986) (Theorem 2.5), it suffices to show Ln(θ̃) = supθ∈Θ Ln(θ) + op(1).

By the definition of θ̃, it suffices to show

sup
θ∈Θ
|Ln(θ)− Gn(θ)| = op(1)

Note that

sup
θ∈Θ
|Ln(θ)− Gn(θ)| ≤

1
n

n

∑
i=1

∣∣∣1(Xi ∈ Π)− 1(Xi ∈ Π̂)
∣∣∣× sup

θ∈Θ
|ln Pθ(Yi|Xi)|

Then, it suffices to show

E

[∣∣∣1(Xi ∈ Π)− 1(Xi ∈ Π̂)
∣∣∣× sup

θ∈Θ
|ln Pθ(Yi|Xi)|

]
→ 0. (19)

Moreover, by assumptions A and C and Holder’s Inequality, condition (19) holds. �

A.5. Proof of Lemma 1.

Proof. Fix θ and δ. W.L.O.G., let x ∈ V(θ, δ) satisfy x′1b1 ≥ γ(θ) + δ(1 + ‖x‖); x′2b2 − a2 ≤ −γ(θ)−

δ(1 + ‖x‖).
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Note that

V −1 (x; θ) = x′1b1 − α1Φ

(
V +

1 (x; θ)− ρV −2 (x; θ)√
1− ρ2

)
,

V +
1 (x; θ) = x′2b2 − α2Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)
.

Therefore,

V −1 (x; θ) + αmaxΦ

(
V +

1 (x; θ)− ρV −2 (x; θ)√
1− ρ2

)
≥ x′1b1 > γ(θ),

V +
1 (x; θ)− αmax

[
1−Φ

(
V −1 (x; θ)− ρV +

2 (x; θ)√
1− ρ2

)]
≤ x′2b2 − α2 < −γ(θ)

where γ(θ) = −∆(θ) + αmax ×Φ
(√

1+ρ
1−ρ ∆(θ)

)
.

Thus, by a similar argument as that in the proof for Theorem 4, it follows that

V −1 (x; θ) ≥ ∆(θ), V +
2 (x; θ) ≤ −∆(θ),

which implies that x ∈ U (θ). �

A.6. Proof of Lemma 2.

Proof. By Lemma 9.12 in Kosorok (2008), the class G0 of functions with the form x′1c1 + c0 with

(c0, c1) ranging over R×Rk1 is a VC class of functions. The class G1 of functions x′1b1 − γ(θ) with

b1 ranging over Rk1 and γ(θ) ∈ R is also a VC class of functions. This is because for any θ ∈ Θ,

x′1b1 − γ(θ) can be written as x′1c1 + c0 for some (c0, c1). Then G1 is a sub–class of G0, therefore G1

is also a VC class of functions with no greater index. Moreover, by Part (v) in Lemma 9.9, Kosorok

(2008), the class of functions with the form x′1b1 − γ(θ)− δ(1 + ‖x‖) is a VC class of functions for

fixed δ ∈ R+. Therefore, the class of sets {x ∈ SX : x′1b1 ≥ γ(θ) + δ(1 + ‖x‖)} is a VC class of

subsets. By Lemma 9.7 (ii) in Kosorok (2008), {V(θ, δ) : θ ∈ Θ} is a VC class of subsets. �

A.7. Proof of Theorem 6.

Proof. For the consistency of θ̂, all the proofs simply follow that for theorem 5. For the second

part of this theorem, by definition of θ̂, there is

1√
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
]

s(Yi, Xi; θ̂) = 0.
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By Taylor expansion

1
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
]

s(Yi, Xi; θ0) +
1
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
] ( ∂

∂θ
s(Yi, Xi; θ†

)′ (
θ̂ − θ0

)
= 0

where θ† is between θ̂ and θ0. Hence

√
n(θ̂ − θ0)

= −
{

1
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
] ( ∂

∂θ
s(Yi, Xi; θ†)

)′}−1
1√
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
]

s(Yi, Xi; θ0)

By the ULLN, assumption E and the fact that 1 [Xi ∈ V(θ, δ)] belongs to VC class of functions

indexed by θ ∈ Nε(θ0), there is

1
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
] ( ∂

∂θ
s(Yi, Xi; θ†)

)′ p−→ E

{
1 [Xi ∈ V(θ0, δ)]

(
∂

∂θ
s(Yi, Xi; θ0)

)′}
.

Hence, it suffices to show

1√
n

n

∑
i=1

1
[

Xi ∈ V(θ̃, δ)
]

s(Yi, Xi; θ0)−
1√
n

n

∑
i=1

1 [Xi ∈ V(θ0, δ)] s(Yi, Xi, θ0) = op(1).

Let h(Y, X; θ, δ) = 1 [X ∈ V(θ, δ)] s(Y, X; θ0), Gn(θ) = n−1 ∑n
i=1 h(Yi, Xi; θ, δ) − Eh(Y, X; θ, δ).

Because 1 [x ∈ V(θ, δ)] indexed by θ is a VC class of functions, then by empirical processes method

(see Pollard, 1989), for every sequence of positive numbers {εn} converging to zero that

sup
{

n1/2 |Gn(θ)−Gn(θ0)| : ‖θ − θ0‖ ≤ εn

}
= op(1).

which implies that

1√
n

n

∑
i=1

h(Yi, Xi; θ̃, δ) = n1/2Gn(θ̃) + n1/2Eh(Y, X; θ̃, δ)

= n1/2
[
Gn(θ̃)−Gn(θ0)

]
+ n1/2Gn(θ0) + n1/2Eh(Y, X; θ̃, δ)

= op(1) +
1√
n

n

∑
i=1

h(Yi, Xi; θ0, δ) + n1/2
[
Eh(Y, X; θ̃, δ)−Eh(Y, X; θ0, δ)

]
Because (1)Eh(Y, X; θ0, δ) = 0; (2) θ̃

p→ θ0, then P{V(θ̃, δ) ⊆ V(θ0, 0)} → 1. Thus Eh(Y, X; θ̃, δ) =

0 with probability approaching to one. Then

1√
n

n

∑
i=1

h(Yi, Xi; θ̃, δ)− 1√
n

n

∑
i=1

h(Yi, Xi; θ0, δ) = op(1).
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�

Appendix B. A general result using copula functions

Let C(v1, v2; ρ0) be the copula function of the joint distribution of (U1, U2), i.e. C(v1, v2; ρ0) =

FU

(
F−1

1 (v1), F−1
2 (v2); ρ0

)
. Let further F and f be the marginal c.d.f. and p.d.f. of Uj (j = 1, 2),

respectively. Then the conditions to define U (θ0) can be written as: x ∈ U (θ0) if and only if

1 + αj ×
∂2C(F(u1), F(u2); ρ0)

∂v2
j

× f (uj) ≥ αj ×
∂2C(F(u1), F(u2); ρ0)

∂v1∂v2
× f (u−j)

for all u ∈ I(x; θ0) and j = 1, 2.

Assumption F. The p.d.f. f satisfies: f (u) = f (−u) for all u ∈ R and f
(

F−1(τ)
)

is increasing in

τ ∈ (0, 1/2].

Assumption G. The copula function C satisfies: (i) ∂C2(v1, v2; ρ0)/∂v2
j ≤ 0; (ii) ∂C2(v1, v2; ρ0)/∂v1∂v2

is monotone increasing in vj and monotone decreasing in v−j on the support (vj, v−j) ∈ (0, 1/2]× [1/2, 1);

(iii) ∂C2(v1, v2; ρ0)/∂v2
j is monotone decreasing in vj and monotone increasing in v−j on the support

(vj, v−j) ∈ (0, 1/2]× [1/2, 1).

Assumption F imposes weak restrictions on the shape of the c.d.f. of Uj, which can be sat-

isfied by, e.g., standard normal or standard logistic distribution. Assumption F implies that

F−1(τ) = −F−1(1 − τ). Assumption G essentially restricts the dependence structure between

private information. Assumption G–(i) is equivalent to the positive regression dependence condi-

tion (see, e.g., de Castro, 2007, for a definition and examples of positive regression dependence).

Note that
∂C2(v1, v2; ρ0)

∂v1∂v2
=

fU(F−1(v1), F−1(v2))

f (F−1(v1))× f (F−1(v2))
.

Therefore, ∂C2(v1, v2; ρ0)/∂v1∂v2 is always positive. Assumption G can be satisfied by, e.g., an

FGM copula C(ν1, ν2; ρ0) = ν1ν2 [1 + ρ0(1− ν1)(1− ν2)] with 0 ≤ ρ0 ≤ 1. It is straightforward to

verify assumption G–(i), (ii) and (iii), since

∂C2(v1, v2; ρ0)

∂v1∂v2
= 1 + ρ0 [−v1 − v2 + 2ν1ν2] ,

∂C2(v1, v2; ρ0)

∂v2
j

= 2ρ0v−j(v−j − 1).
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Lemma 4. Suppose assumptions F and G hold. Let τ = τ(θ0) ∈ (0, 1/2] solve19

1 + αmax ×
∂2C(τ, 1− τ; ρ0)

∂v2
j

× f
(

F−1(τ)
)
≥ αmax ×

∂2C(τ, 1− τ; ρ0)

∂v1∂v2
× f

(
F−1(1− τ)

)
.

Then a sufficient condition for x ∈ U (θ0) is: either V −1 (x) ≥ F−1(1− τ(θ0)); V +
2 (x) ≤ F−1(τ(θ0)), or

V −1 (x) ≤ F−1(τ(θ0)); V −2 (x) ≥ F−1(1− τ(θ0)).

Proof. It directly follows from assumptions F and G.

Further, I define Π as follows: let Π ≡ {x ∈ SX : E(Y1|X) ≥ F(γ̃∗0), E(Y2|X) ≤ 1− F(γ̃∗0)} ∪ {x ∈

SX : E(Y1|X) ≤ 1− F(γ̃∗0), E(Y2|X) ≥ F(γ̃∗0)}, where γ̃∗(θ) ≡ F−1(τ(θ)) + α × ∂C(τ(θ),1−τ(θ);ρ)
∂v1

and γ̃∗0 = supθ∈Θ γ̃∗(θ). By a similar argument as that in the proof of Theorem 4, one can show

that Π ⊆ C(ΘI).

19By assumptions F and G, there are at most one solution. It is understood that if there no such a solution, it corresponds
to the degenerated case, i.e., U (θ0) is the whole support in the covariate space. For notational brevity, let τ(θ0) = 1/2
when there is no solution.
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