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1. INTRODUCTION

This paper studies the identification and estimation of a static binary decision game of

incomplete information. We make no parametric assumptions on the joint distribution of

private signals and allow them to be correlated. We show that the parameters of interest

can be point–identified subject to a scale normalization under mild support requirements

for the regressors (publicly observed state variables) and errors (private signals). Following

Manski and Tamer (2002), we propose a maximum score type estimator for the structural

parameters and establish its asymptotic properties.

Static binary decision games have many applications. Bjorn and Vuong (1984), for

example, studies labor force participation. Recently, this class of games are more widely

adopted in the empirical industrial organization literature for studying firms’ entry behavior

(e.g. Berry, 1992; Bresnahan and Reiss, 1990, 1991a,b; Ciliberto and Tamer, 2009; Jia, 2008).

In much of this literature, an agent’s payoff often depends on not only his covariates, but

also other agents’ choices. Therefore, the strategic effects are embedded in the equilibrium

of the game model, which usually is a solution to a set of simultaneous equations. Recent

contributions in static game of incomplete information includes Aguirregabiria and Mira

(2002), Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov (2010), de Paula and

Tang (2010), Lewbel and Tang (2012), Pesendorfer and Schmidt-Dengler (2003) and Tang

(2010).

In this paper, we propose a new methodology that contributes to the literature in two

respects. First, we do not require the (conditional) independence of private signals across

players, as e.g., Aguirregabiria and Mira (2002), Bajari, Hong, Krainer, and Nekipelov

(2010), and de Paula and Tang (2010) do. Instead, we assume that the private signals are

positively regression dependent, conditional on the publicly observed states, which includes

(conditional) independence as a special case. Positive regression dependence is a weaker

notion of positive dependence than alternatives such as positive affiliation and decreasing

inverse hazard rates, but stronger than positive correlation. We provide a numerical example
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showing that ignoring the correlation between the private signals results in inconsistent

estimates.

Allowing correlated private signals in discrete games is motivated primarily by empirical

concerns. The (conditional) independence assumption, commonly assumed in the literature,

is convenient but also implies that equilibrium choices must be conditionally independent, an

implication which could be invalidated by data. In many empirical applications, e.g. in the

study of oligopolies’ strategic entry, there is indeed not much of theoretical justification that

the firms’ private profit shocks should be independent of each other. On the contrary, one

would expect the shocks to be positively correlated as they may originate from demand and

cost shifters of the same market. Bajari, Hong, Krainer, and Nekipelov (2010) studies stock

recommendations, including “strong buy”, “buy”, “hold”, and “sell”, for high technology

stocks from equity market analysts. The payoff relevant private signals received by analysts

would be correlated with each other, if these signals reflect their customers preference shocks

and their customer groups overlap or interact with each other.

Second, we make no parametric assumptions on the joint distribution of private signals,

which distinguishes our paper from Xu (2011). We provide a semiparametric identification

procedure without explicitly solving an equilibrium. Our model also accommodates het-

eroskedasticity of unknown form, as we assume the conditional median independence of the

private signals given the publicly observed states. It turns out that the point identification of

structural parameters only requires a similar set of weak conditions as in single agent binary

decision models (Manski, 1975). The method developed in this paper hence sheds some

lights on the comparison between the identification of a semiparametric binary response

model with and without strategic interactions.

Aradillas-Lopez (2010) also proposes a semiparametric approach in a similar setup of

a discrete choice game of incomplete information, in which private signals are allowed to

be correlated. Aradillas-Lopez (2010) adopts an equilibrium notation that uses the beliefs

concept suggested by Aumann (1987). Our paper, on the other hand, focuses on the standard

Bayesian Nash Equilibrium (BNE) concept (see, e.g., Fudenberg and Tirole, 1991, Chapter
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6), which delivers a different set of structural equations from Aradillas-Lopez (2010)’s. We

provide a more detailed comparison in Section 7.

We achieve point identification at infinity (of regressor values). With a Monotone Strategy

Bayesian Equilibrium (MSBE) being played,1 we show that the equilibrium strategies can

be represented by a semiparametric binary response model with an unobserved regressor.

We derive (estimable) bounds for the unobserved regressor. Under further mild assumptions,

mainly a support condition about the regressors (similar to that in Manski, 1975), the upper

and lower bounds on the unobserved regressor can be shown to converge to each other at

the infinity of regressor values. Point identification then follows in the same way as with

the maximum score estimator. The strategy of identification at infinity is first adopted by

Chamberlain (1986), Heckman (1990) and Manski (1975, 1985, 1988). In the empirical

game literature, it can also be found in Bajari, Hong, and Ryan (2010) and Tamer (2003) in

their studies of complete information games with multiple equilibria.

Because of the nature of our identification and weak model restrictions imposed, our

estimator follows the principles of the maximum score estimator (see Manski, 1975, 1985,

1988; Manski and Tamer, 2002). In particular, we extend Manski and Tamer (2002) and

propose a two–step modified maximum score estimator in which the bounds of unobserved

beliefs are nonparametrically estimated in the first step. By extending Kim and Pollard

(1990); Nolan and Pollard (1988), we also show our estimator is 3
√

n consistent and has a

non–normal limiting distribution. Our estimation approach is thus different from most of the

literature, e.g. Aguirregabiria and Mira (2002), Aradillas-Lopez (2010) and Bajari, Hong,

Krainer, and Nekipelov (2010), where (pseudo) likelihood based approaches are used. Our

estimation method is also different from Tang (2010) who takes a single index approach.

The rest of this paper is organized as follows. Section 2 introduces the game model,

explains the set of structural equations delivered by BNE solution and characterizes sufficient

conditions for the existence of MSBE. In Section 3 we derive the bounds for the equilibrium

1Athey (2001) provides the pioneering result that an MSBE generally exists in a large class of games, which
are referred as supermodular or log–supermodular games.
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strategy and show the point identification of the structural parameters. Further, in Section 4,

we propose a two-step modified maximum score estimator and establish its 3
√

n–consistency

and the limiting distribution. Section 5 contains an extension to the partial identification

of structural parameters under weaker conditions. Section 6 gives a simulation example to

illustrate the performance of our estimator in finite samples. Section 7 provides discussions.

2. MODEL

We study the following 2–by–2 static game of incomplete information:

Y2 = 1 Y2 = 0

Y1 = 1 X′1β1 − α1 −U1, X′2β2 − α2 −U2 X′1β1 −U1, 0

Y1 = 0 0, X′2β2 −U2 0, 0

In this game, two players, j = 1, 2, simultaneously make choices Yj ∈ {0, 1}. The first

number in a cell of the matrix is the payoff of player 1 under the corresponding choice profile.

A state of the game is (X, U), where X = (X′1, X′2)
′ and U = (U1, U2)

′. Xj ∈ Xj ⊆ Rdj ,

dj ∈N+, is a vector of publicly observed variables. Uj ∈ R is the private signal observed

only by player j. Let FXU be the joint distribution function of (X, U). We assume that FXU

is common knowledge.

In this structure, β j ∈ Rdj and αj ∈ R are the parameters of interest. αj measures the

strategic effect: how the action of the other player (−j) affects the payoff of player j when

choosing Yj = 1. Let β = (β′1, β′2)
′, α = (α1, α2)

′. We assume αj ≥ 0 for the brevity of

our notation.2

Player j chooses action 1 if and only if his expected payoff is greater than 0,

Yj = 1
[

X′jβ j − αjP(Y−j = 1|X, Uj)−Uj ≥ 0
]

, (1)

2 See Section 7 for an extension to the case of αj ≤ 0. In this paper, we consider the case where the strategic
component is a constant and there are no exogenous regressors affecting αj. Such a specification restriction
simplifies our discussion and notation.
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where 1 [·] is the indicator function. The term P(Y−j = 1|X, Uj) is player j’s expectation

about the other player’s action (based on player j’s information). Equation (1) defines a set

of simultaneous equations which are our econometric model. Aradillas-Lopez (2010) adopts

a different belief concept suggested by Aumann (1987), which delivers a different set of

simultaneous equations. (See our Section 7 for a more detailed discussion.)

A special type of BNE that we are interested in is the MSBE. Monotonicity of equilibrium

strategies is a desirable property in many other applications of incomplete information

games, e.g. auctions, differentiated-product price-competition and global games. With

an MSBE, the equilibrium strategies are weakly monotone functions, i.e., there exists a

cutoff–value function profile u∗ = (u∗1 , u∗2) : X → R2 such that for each j,

Yj = 1
[
Uj ≤ u∗j (X)

]
. (2)

The MSBE equilibrium concept used here is somewhat restrictive, but is widely employed

in the empirical game literature, explicitly or implicitly. Note that the usual assumption

of the independent private signals necessarily implies that any equilibrium in this binary

decision game has to be a monotone strategy equilibrium.

Athey (2001) provides the pioneering result that a monotone pure-strategy equilibrium

exists whenever a Bayesian game obeys a Spence-Mirlees single-crossing condition (SCC).

In the model we are considering here, the SCC is satisfied if Assumption A holds.

Assumption A. The conditional density fU|X(·|·) of (U1, U2) given X exists. For j ∈
{1, 2}, for any t ∈ R and x ∈ X , uj + αjP

(
U−j ≤ t|X = x, Uj = uj

)
is non–decreasing

in uj.

Assumption A implies that when his opponent plays a monotone strategy, a player’s best

response is nondecreasing in his private signal. It imposes a restriction on the curvature

of the conditional copula function CU|X of U1 and U2 given X.3 In a special case where

3We use a simple case to illustrate this. Suppose that U and X are independent, then

u1 + α1P (U2 ≤ u2|X = x, U1 = u1) = u1 +
α1

fU1(u1)

∂C
(

FU1(u1), FU2(u2)
)

∂u1
.
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U is parametrized to be bivariately normal distributed with mean zero and unit variance,

Assumption A implies that the correlation between U1 and U2 is bounded above (below

one), vis–a–vis the magnitude of α. Assumption A is trivially satisfied when U1 and U2 are

independent, conditional on X.

Lemma 1. Suppose that Assumption A holds. Then for any X = x ∈ X , there exists an

MSBE with equilibrium strategies characterized by Equation (2).

Proof. See Appendix A.1. �

Note that Assumption A does not rule out the possibility of the existence of non–monotone

strategy Bayesian equilibria. Under Assumption A, however, we implicitly assume that only

one MSBE is played in equilibrium.

Furthermore, Assumption A is a sufficient condition for the existence of an MSBE. Our

analysis stays valid as long as an MSBE exists and is adopted. In addition, if there is an

identifiable subset of X on which an MSBE is played, our analysis can still be applied by

using data belonging to the subset.4

3. IDENTIFICATION

In this section we study the identification of (α, β). Researchers observe X and Y, but not

the private signals U. Our identification strategy is as follows. We first derive (estimable)

bounds for the equilibrium strategies of the players under the assumption that U1 and U2

are positively regression dependent conditional on X (Assumption B below). Then we show

that the bounds can be arbitrarily close to each other when some argument of the regressors

goes to infinity (Lemma 2). These results deliver the point–identification of (α, β).

Assumption B. (positive regression dependence) For j ∈ {1, 2}, for any x ∈ X and any

t ∈ R, P(U−j ≤ t|X = x, Uj = uj) is non–increasing in uj.

Suppose that α1 > 0 and the copula function is twice differentiable, then the condition stated in the assumption

says that ∂2C(s1,s2)

∂s2
1
≥ − 1

α1 fU1 (F−1
U1

(s1))
. Similarly, we have ∂2C(s1,s2)

∂s2
2
≥ − 1

α2 fU2 (F−1
U2

(s2))
.

4Xu (2011) proposes a method to identify such a subset in a parametric framework.
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Positive regression dependence is a weaker notion of positive dependence than other alter-

natives such as positive affiliation and decreasing inverse hazard rate.5 Weaker correlation

between U1 and U2 implies less restrictions on αj. Note that, together with Assump-

tion A, Assumption B further imposes restrictions on the scale of the strategic components:

αj ≤ − 1
∂P(U−j≤t|X=x,Uj=uj)/∂uj

for all x, t and uj.

Under Assumption B, we are able to represent the equilibrium strategies by a semipara-

metric binary regression model with interval–observed data (see Manski and Tamer, 2002).

To motivate, suppose that P(U−j ≤ t|X = x, Uj = uj) is continuous in uj for all t ∈ R

and x ∈ X (we actually do not assume this in Theorem 1). Given the equilibrium is

monotone, and conditional on any x ∈ X , player j receives zero expected payoff when the

value of his private signal equals to u∗j (x),

x′jβ j − αjP
(

U−j ≤ u∗−j(x)|X = x, Uj = u∗j (x)
)
− u∗j (x) = 0. (3)

By the definition of MSBE, it follows that

Yj = 1[Uj ≤ u∗j (x)]

= 1
[
Uj ≤ x′jβ j − αjP

(
U−j ≤ u∗−j(x)|X = x, Uj = u∗j (x)

)]
. (4)

Note that the term P
(

U−j ≤ u∗−j(x)|X = x, Uj = u∗j (x)
)

in Equation (4) is an unob-

servable regressor of the binary response model. Let ν0
j (x) = P

(
Y−j = 1|X = x, Yj = 0

)
and ν1

j (x) = P
(
Y−j = 1|X = x, Yj = 1

)
. Assumption B implies that,

ν0
j (x) = P

[
U−j ≤ u∗−j(x)|X = x, Uj > u∗j (x)

]
≤ P

[
U−j ≤ u∗−j(x)|X = x, Uj = u∗j (x)

]
≤ P

[
U−j ≤ u∗−j(x)|X = x, Uj ≤ u∗j (x)

]
= ν1

j (x) .

5de Castro (2007) provides an example. Let the density of U ∈ [0, 1]2 be f (u1, u2) = k/[1 + (u1 − u2)
2] for

some k > 0. Then U1 and U2 are positive regression dependent, but neither affiliated nor with the decreasing
inverse hazard rate.
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Hence the unobserved regressor, as a function of x, is bounded by a pair of estimable

functions. The result is formally summarized in Theorem 1.

Theorem 1. Suppose that Assumptions A and B are satisfied. Then for player j = 1, 2, the

equilibrium strategy of player j is represented by the structure

Yj = 1
[
Uj ≤ X′jβ j − αjνj (X)

]
; P

(
ν0

j (X) ≤ νj (X) ≤ ν1
j (X)

)
= 1, (5)

where

νj(x) = P
(

U−j ≤ u∗−j(x)|X = x, Uj = u∗j (x)
)

. (6)

Proof. See Appendix A.2. �

We have a few comments on Theorem 1. First, the bounds ν0
j and ν1

j are estimable. We

study the identification taking ν0
j and ν1

j as known. Second, if U1 and U2 are independent

conditional on X, then ν1
j (x) = ν0

j (x) for all x ∈ X . If the inequality in Assumption B

holds strictly on a subset X̃j of Xj (a violation to conditional independence), then ν1
j (x) >

ν0
j (x) for all x ∈ X̃j. Theorem 1 thus provides a testable implication for conditional

independence provided players play one MSBE.6 Further, we can relax Assumption B by

requiring P(U−j ≤ t|X = x, Uj = uj) be monotonic in uj for all t and x, i.e., our model

allows for both positive and negative regression dependence. Similar results as stated in

Theorem 1 follow by redefining ν1
j and ν0

j . We maintain Assumption B throughout this

paper for the ease of notation.

Assumption C. Med
(
Uj|X = x

)
= 0 for j ∈ {1, 2} and all x ∈ X .

Assumption D. For j = 1, 2, there exists no proper linear subspace of Rdj having proba-

bility 1 under FXj .

Assumptions C and D are also made in Manski (1985) for a single agent binary response

model. Assumption C imposes a conditional median independence restriction on the private
6We thank Aureo de Paula for his comments on this. In this paper, we focus on identification and estimation
and leave rigorous investigation on this issue as future research.
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signals. Normalizing the median to be zero is innocuous as long as a constant term is included

in Xj. This assumption allows for heteroskedasticity of unknown form. Assumption D

excludes multicollinearity.

Let Xj,1 be the first regressor for player j. Let X̃j = (Xj,2, · · · , Xj,dj)
′. We define β j,1

and β̃ j in the same way.

Assumption E. β j,1 6= 0. The distribution of Xj,1 conditional on (X̃j, X−j) has everywhere

positive density with respect to the Lebesgue measure.

Assumption E requires that for each player there exists a special regressor which is contin-

uously distributed and has unbounded support conditional on the rest of regressors. Manski

(1985) makes a assumption similar to Assumption E. We require that the conditioning

variables include not only the rest of the regressors of player j, but also all of player −j’s

regressors, which implies an exclusive restriction to the model. This requirement excludes

the possibility of using a state variable that is common to both players, e.g. a macroeconomic

variable, as the special regressor. Similar exclusion restriction can also be found in Bajari,

Chernozhukov, Hong, and Nekipelov (2009) and de Paula and Tang (2010).

Assumption F. For all u ∈ R and all xj ∈ Xj,

lim
t→+∞

P(U−j ≤ t− α−j|Xj = xj, X′−jβ−j = t, Uj ≥ u) = 1,

lim
t→−∞

P(U−j ≤ t|Xj = xj, X′−jβ−j = t, Uj ≤ u) = 0.

Assumption F requires that the conditional tail probability of U−j is arbitrarily small

when the conditioning variable X′−jβ−j approaches ±∞. Assumption F is trivially satisfied

when U and X are independent, or when the support of the distribution of U is bounded.

Lemma 2. Suppose that Assumptions A to F hold. Then for all ε > 0 and all xj ∈ Xj,

lim
t→+∞

P
(

ν0
j (X) ≤ 1− ε|Xj = xj, X′−jβ−j = t

)
= 0,

lim
t→−∞

P
(

ν1
j (X) ≤ ε|Xj = xj, X′−jβ−j = t

)
= 1.
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Proof. See Appendix A.3. �

Note that since ν0
j (x) ≤ ν1

j (x) ≤ 1 for all x, it follows from Lemma 2 that both ν0
j and

ν1
j converge to 1 in probability as x′−jβ−j goes to +∞. Meanwhile, both bounds converge

to 0 in probability as x′−jβ−j goes to −∞.

In Manski (1975, 1985) and Manski and Tamer (2002), the parameters of interest can

only be identified up to scale. For the same reason, we can only identify (αj, β j) up to scale

for each j in our model. We normalize |β j,1| = 1.

Theorem 2. Suppose that Assumptions A to F hold. Then (α, β) is point identified.

Proof. See Appendix A.4. �

In our model, the support condition on regressor Xj,1 plays an extra role under Assump-

tion F other than in Manski (1985): when x′1β1 goes to +∞ (−∞), both ν1
2 and ν0

2 converge

to 1 (0). Thus we take advantage of both infinities, at which the unobserved regressor

behaves as an observed 0–1 variable. We can then achieve point identification of (α, β) in

the same way as that in a single agent binary response model.

4. ESTIMATION

We now propose an estimator which is motivated by the modified maximum score

estimator (MMSE) of Manski and Tamer (2002). We modify the objective function in

Manski and Tamer (2002) by using the density function fX as weighting factors of scores.

Our estimation consists of two steps. First, we non–parametrically estimate of our bounds

(ν0
j (·), ν1

j (·)), fX and a conditional choice probability function pj(x) that will be defined

later; Second, by plugging the nonparametric estimates into the sample analog of the

objective function, we rewrite it as a U–process, the maximizer of which is shown to be
3
√

n–consistent. We also establish its limiting distribution by extending Kim and Pollard

(1990, Theorem 1.1) to our U–process sample analog.
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Assumption G. Let Zi =
(
X′i , Y′i

)′ ∈ Rd+2 for i = 1, 2, · · · , n be an i.i.d. sample, where

Yi = (Y1i, Y2i)
′, Xi =

(
X′1i, X′2i

)′ and d = d1 + d2.

Let pj (x) = P
(
Yj = 1|X = x

)
and δj (x) = 1

[
pj (x) ≥ 1/2

]
. To simplify the

notation, we denote vj = (ν1
j , ν0

j )
′, v = (v′1, v′2)

′ and δ = (δ1, δ2)
′. We also de-

note θj = (aj, b′j)
′, θ = (θ′1, θ′2)

′, as generic parameter values, θ0,j = (αj, β′j)
′, and

θ0 = (α′, β′)′. Let further

Θj = {θj ∈ R×Rdj : |bj,1| = 1; ‖θj‖ ≤M‖}.

and Θ = Θ1 × Θ2, where M is a large positive number to ensure Θ is compact and

(θ0,j) ∈ Θj. Moreover, let sgn (·) be the sign function, i.e. sgn (x) = 1, 0 and −1

respectively when x > 0, x = 0 and x < 0.

Lemma 3. Suppose that assumptions A through F are satisfied, then

θ0 = argmax
θ∈Θ

L(θ),

where L(θ) = ∑2
j=1 E

[
gj
(
Z; θj, vj, δj, fX

)]
and for any arbitrarily fixed bounded and

strictly positive function wj(·) : Rd → R, the function gj is defined by

gj
(
Z; θj, vj, δj, fX

)
=
(
2Yj − 1

)
× fX(X)× wj(X)

×
{

δj (X) sgn
[
X′jbj − ajν

0
j (X)

]
+
(
1− δj (X)

)
sgn

[
X′jbj − ajν

1
j (X)

]}
.

Proof. See Appendix B.1. �

The function wj : X → R++ is known and serves as a weighting factor. For the brevity

of notation, we set wj(x) = 1 for all x ∈ X . It should be noted that our analysis carries

through as long as wj is bounded from above.

The population objective function defined above is similar to Manski and Tamer (2002)

except for the weighting factors fX of scores. We could define an estimator for θ0 as the
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maximizer of a sample analog L∗n of L:

L∗n(θ; v̂, δ̂, f̂X) =
1
n

n

∑
i=1

2

∑
j=1

gj(Zi; θj, v̂j, δ̂j, f̂X),

where v̂ = (v̂′1, v̂′2)
′, δ̂ = (δ̂1, δ̂2)

′ and f̂X are nonparametric estimators of v, δ and fX,

respectively. Unfortunately, it is difficult to establish the asymptotic properties for such an

estimator, partly due to the first–stage nonparametric estimates in indicator functions. In

contrast, we follow Wan and Xu (2012) and construct a U–process sample analog to define

our estimator.

We define some notation to begin with. Let λj = (δj, v′j)
′ and λ = (λ′1, λ′2)

′. Let further

ϑj(x; θj, λj) = δj (x) sgn[x′jbj − ajν
0
j (x)] + (1− δj(x)) sgn[x′jbj − ajν

1
j (x)]. Then we

define

Un(θ; λ) =
1

n(n− 1)

n

∑
i=1

n

∑
` 6=i

2

∑
j=1

{
(2Yj` − 1)Kh(X` − Xi)ϑj(Xi; θj, λj)

}
, (7)

where Kh(·) = K(·/h)/hd, K and h are the kernel function and the smoothing bandwidth,

respectively. As mentioned above, we let wj(x) = 1 for all x for the notational brevity.7

Un(θ; λ) is not readily usable because λ is unknown. Note δj(x) = 1[pj(x) ≥ 1/2] a.e.
=

1[
(
2pj(x)− 1

)
× fX(x) ≥ 0], we estimate δj by

δ̂j(xi) = 1

[
1

(n− 1)

n

∑
` 6=i

{
(2Yj` − 1)× Kh(X` − xi)

}
≥ 0

]
.

Further, we estimate our bounds ν1
j and ν0

j by

ν̂1
j (xi) =

∑n
` 6=i Y−j`Yj`Kh(X` − xi)

∑n
` 6=i Yj`Kh(X` − xi)

+ n−γ, ν̂0
j (xi) =

∑n
` 6=i Y−j`(1−Yj`)Kh(X` − xi)

∑n
` 6=i(1−Yj`)Kh(X` − xi)

− n−γ,

7If we choose a weighting function wj(·) 6= 1, we could write our sample objective function as

Un(θ; λ) =
1

n(n− 1)

n

∑
i=1

n

∑
` 6=i

2

∑
j=1

{
(2Yj` − 1)Kh(X` − Xi)ϑj(Xi; θj, λj)wj(Xi)

}
.
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where γ > 1/3. Later we will make assumptions on K, h, v and the underlying distribution

functions such that the first term in ν̂0
j (reps. ν̂1

j ) converges to ν0
j (reps. ν̂1

j ) at a rate

faster than n−γ. Thus, the second term n−γ ensures that ν̂0
j (x) ≤ ν̂1

j (x) with probability

approaching one (faster than any polynomial rates).

We hence define our estimator of θ0 as: θ̂ = argmax
θ∈Θ

Un
(
θ; λ̂
)
.

To compare with Manski and Tamer (2002)’s MMSE, note that

Un(θ; λ̂) = Ln(θ; p̂, f̂X, λ̂) ≡ 1
n

n

∑
i=1

2

∑
j=1

[
2p̂j(Xi)− 1

]
f̂X(Xi)ϑj(Xi; θj, λ̂j), (8)

where f̂X(xi) = ∑n
` 6=i Kh(X`− xi)

/
(n− 1) and p̂j(xi) = ∑n

` 6=i Yj`Kh(X`− xi)
/

∑n
` 6=i Kh(X`−

xi). It is straightforward to note the difference is that we replace Yj,i with p̂j(Xi) in our

sample analog. The advantage of such modification is that, under additional weak conditions,

it can be shown that the first–stage nonparametric estimates δ̂ in our sample analog only

causes a small approximation error of order op(n−2/3).

To establish the consistency of θ̂, we impose the following assumptions.

Assumption H. θ0 is in the interior of the compact parameter space Θ.

Assumption I. P
[
pj (X) = 1/2

]
= 0. Furthermore, ∀θ ∈ Θ, P[X′jbj − ajν

0
j (X) =

0] = P[X′jbj − ajν
1
j (X) = 0] = 0.

The first equation of Assumption I is also assumed in Manski and Tamer (2002).8 The

second equation is a rank condition imposed on the augmented random vector (X, ν0
j (X))

and (X, ν1
j (X)) respectively.

Assumption J. X is a continuous random vector and the density function fX(·) are contin-

uous in the support.

8In Manski and Tamer (2002), it is assumed that P {(x, ν1, ν0) : P (y = 1|x, ν1, ν0) = 1− α} = 0, where ν0
and ν1 are bounds of the unobserved regressor.
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Assumption K. The kernel function K is a symmetric Parzen Rosenblatt kernel. i.e., (1)∫
Rd K(u)du = 1; (2) supu |K(u)| = K < ∞; (3)

∫
Rd |K(u)|du < ∞; (4) K(u) = K(−u)

and (5) ‖u‖d × |K(u)| → 0 as ‖u‖ → ∞. Moreover, h→ 0 and nhd → ∞ as n→ ∞.

Assumptions J and K are standard in nonparametric estimation literature (e.g. Pagan and

Ullah, 1999).9

Theorem 3. Suppose that assumptions A through K hold. Then θ̂
p→ θ0.

Proof. See Appendix B.2. �

The sample objective function in Equation (8) is “irregular” in the sense that it belongs

to the class of Kim and Pollard (1990)–type objective functions which do not allow for

quadratic expansions. As a consequence, this class of estimators, including the one we

propose here, have slower convergence rate ( 3
√

n) and non–normal limiting distributions.

We proceed with smoothness conditions on the nonparametric functions.

Assumption L. pj(·), fX(·), ν0
j (·) and ν1

j (·) are everywhere R times continuously differ-

entiable with bounded R–th partial derivatives.

Assumption M. For x ∈ X , let ξ j(x) =
[
2Pj(x)− 1

]
fX(x). Assume that there exists

an ε–neighborhood around zero, denoted as Nε and a constant Cξ > 0, such that for any

subset S ⊆ Nε, there is

P
(
ξ j(X) ∈ S

)
≤ Cξ × µ(S),

where µ is the Lebesgue measure. Moreover, for m = 0, 1, there exists an εm–neighborhood

around zero, denoted as Nεm , an ηm–neighborhood around θ0, denoted as Nηm , and a

constant Cm > 0, such that for any subset S ⊆ Nεm and θ ∈ Nηm , there is

P
(

X′jbj − ajν
m
j (X) ∈ S

)
≤ Cm × µ(S).

Note that Assumptions L and M imply Assumptions I and J, respectively.
9It is not necessary that all the regressors are continuous random variables. Similar arguments can be carried
through with additional notation.
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Assumption N. The kernel function K is a symmetric Parzen Rosenblatt kernel of order R.

i.e., (1) Assumption K holds; (2)
∫

Rd ur1
1 , ..., urd

d K(u)du = 0 if 1 ≤ ∑d
k=1 rk ≤ R− 1; (3)∫

Rd ur1
1 , ..., urd

d K(u)du = 1 if ∑d
k=1 rk = R, where rk ∈N+ for k = 1, ..., d.

Assumption O. Let γ > 1/3 and h satisfies nγ(nhd)−1/2 = o(n−r0) and nγhR =

o(n−r0) for some r0 > 0.

Assumption O implies that the high order kernel we use should satisfy R > d, a similar

condition is also assumed in Powell, Stock, and Stoker (1989). To see this, let h ∝

n−1/(2R+d) be the optimal choice of bandwidth. By Assumption O, we have R/(2R+ d) >

1/3 and, therefore, R > d. It should also be noted that Assumptions G and L through O

guarantee ξ̂ j(x) converges to ξ j(x) faster than n−1/3 for all x ∈ X .

Moreover, for t ∈ R, let vj(t) = (ν0
j (·)− t, ν1

j (·)+ t)′. Let further v(t) = (v′1(t), v′2(t))
′.

By definition, v = v(0).

Lemma 4. Suppose that Assumptions A through G, I, and L through O hold. Then there

exist random vectors {(Γn, Tn)} of order op(n−2/3), which are independent with θ, such

that

Un(θ; δ, v(0))− Tn ≤ Un(θ; δ̂, v̂) ≤ Un(θ; δ, v(2n−γ)) + Γn.

Proof. See Appendix B.3 �

Lemma 4 is crucial because it shows that the first stage nonparametric estimates ap-

proximation error is negligible and allows us to focus on the infeasible sample analog

Un(θ; δ, v(t)), which is a U–process. Kim and Pollard (1990) establish the cube–root

convergence rate for the maximum score estimator (see, e.g., Manski, 1975). We extend

their results to our U–process sample analog.

Let ϑ̄j(X; θj) = ϑj(X; θj, λj)−ϑj(X; θ0,j, λj). Let further κ0,j(xj, vj) = 2E{ξ+j (X)|Xj =

xj, ν0
j (X) = vj} and κ1,j(xj, vj) = 2E{ξ−j (X)|Xj = xj, ν1

j (X) = vj} where ξ+j =

max{ξ j, 0} and ξ−j = −min{ξ j, 0}.
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Theorem 4. Suppose that Assumptions A through O hold. Then

n1/3 (θ̂ − θ0
) d→ argmaxt∈Rd{W(t)− 1

2
t′Vt},

where W is a mean zero Gaussian process with covariance kernel H:

H(s, t) = 2 lim
η→∞

η ∑
j=1,2

E
{

ξ2
j (X)ϑ̄j(X; θ0,j + s/η)ϑ̄j(X; θ0,j + t/η)

}
; and

V = 2 ∑
m=0,1

∑
j=1,2

∫
1{x′jβ j − αjvj = 0}

[
κ̇m,j(xj, vj)

′θ0,j
]

fXj,νj(X)(xj, vj)(x′, vj)
′(x′, vj)dσm

j ,

where σm
j denotes surface measure of (X′j, νm

j (X)) on x′jβ j + αjν
m
j = 0. Moreover, W(t)−

1
2 t′Vt has a unique maximizer almost surely on all its sample path.

Proof. See Appendix B.4. �

5. PARTIAL IDENTIFICATION UNDER WEAKER CONDITIONS

In this section we extend our approach under weaker conditions such that the structural

parameters are partially identified. Without assuming the support conditions (Assumptions D

to F), we show that parameters of interest are set–identified in general, and the identified set

can be estimated by a level set of the modified maximum score objective function.

For j = 1, 2, let ΘI
j be the collection of θj such that for all x ∈ X ,

1[x′jbj − ajν
1
j (x) ≥ 0] ≤ Med(Yj|X = x) ≤ 1[x′jbj − ajν

0
j (x) ≥ 0].

Let further ΘI = ΘI
1 × ΘI

2. We call ΘI the identified set. Theorem 1 ensures ΘI be

nonempty as θ0 ∈ ΘI under Assumptions A and B. Note that ΘI would degenerate to a

singleton if we impose Assumptions D to F.

Following the modified maximum score estimator proposed by Manski and Tamer (2002),

we define the set estimator Θ̂I for ΘI as

Θ̂I =

{
θ∗ ∈ Θ : Un

(
θ∗; λ̂

)
≥ sup

θ∈Θ
Un
(
θ; λ̂
)
− κn

}
(9)
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for some κn → 0. The estimator is a level (of κn) set of the sample objective function.

To establish consistency, we adopt the directional Hausdorff distance measure:

ρ (A, B) = sup
a∈A

inf
b∈B
‖a− b‖ ,

where ‖·‖ is the Euclidean norm. When either A or B is empty set, the distance is +∞.

Theorem 5. Suppose that Assumptions A though C, and G through O are satisfied, then

ρ(Θ̂I , ΘI)
p→ 0. Suppose in addition that supθ∈Θ |Un(θ; λ̂)− U (θ; λ)| = op (κn), then

ρ(ΘI , Θ̂I)
p→ 0.

Proof. See Appendix B.5. �

It is also possible to conduct inference on ΘI under partial identification conditions,

following the methods proposed in Chernozhukov, Hong, and Tamer (2007); Blevins (2012),

among others. We do not further investigate it in the present paper.

6. EXPERIMENTS

In this section, we provide a numerical example to illustrate that ignoring the correla-

tion between the private signals results in inconsistent estimates and possibly misleading

inference. In particular, we investigate the performance of a two–step Maximum Likelihood

Estimator (MLE) when the belief is mis–specified (while the distribution of signals are

corrected specified).

Recall that Theorem 1 implies that the structural model can be represented as a semipara-

metric binary regression model

Yj = 1[β j,1Xj,1 + β j,2 − αjνj(X)−Uj ≥ 0],

where νj(x) = P(U−j ≤ u∗−j(x)|X = x, Uj = u∗j (x)) is the “interval–observed regres-

sor”.
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If the correlation between U1 and U2 were ignored, a two–step MLE would be based on

the following specification,

Yj = 1[β j,1Xj,1 + β j,2 − αjP(Y−j = 1|X)−Uj ≥ 0]. (10)

Two–step MLE could be inconsistent because P(Y−j = 1|X) 6= P(Y−j = 1|X, Uj) in

general.

We evaluate the performance of both estimators in following examples. Let d1 = d2 = 2,

X1 = (X1,1, 1)′ and X2 = (X2,1, 1)′. (X1,1, X2,1) is drawn from a mixture of two normal

distributions10  X ∼ N(0, 0.16), with prob. 3
4

X ∼ N(0, 100), with prob. 1
4

We let U be independent of X. U1 and U2 have a mean zero bivariate normal distribution

with variance σ2
j = 1 and correlation coefficient r ∈ {0, 0.1, · · · , 0.7}. We consider

different values of correlation and illustrate how the “magnitude” of ignored correlation

affects bias.

The parameters in the profit function are set as β1,2 = β2,2 = 0, β1,1 = β2,1 = 1,

α1 = α2 = 1. It can be shown that an MSBE exists under these designs, i.e., for each

x, there exist cutoff values u∗1(x) and u∗2(x), such that player j chooses 1 whenever his

private signal Uj ≤ u∗j (x). We compute u∗j (x) by solving the following equations for each

realization of X in the sample:

u∗1 = β1,1x1,1 + β1,2 − α1Φ
(σ2u∗2 − ρσ1u∗1

σ1σ2
√

1− ρ2

)
,

u∗2 = β2,1x2,1 + β2,2 − α2Φ
(σ1u∗1 − ρσ2u∗2

σ1σ2
√

1− ρ2

)
,

where Φ(·) is the c.d.f. of standard normal distribution.

10Large variance generates X with big absolute values, which mimic extremely “large” or “small” markets.
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FIGURE 1. Average bias and standard deviation

Since U1 and U2 are jointly normally distributed with positive correlation, they are

positively regression dependent and Assumptions D and E are satisfied as well. Moreover,

Assumption F holds since U and X are independent.

Figure 1 shows the average bias (the two top panels) and standard deviation (the two

bottom panels) of both estimators under different sample sizes. All results are based on 500

replications.11 Detailed results are reported in Appendix D. We can see from the figure that

the performance of our estimator is robust for different values of r. The finite sample bias

decreases as the sample size increases. The standard deviation of our estimator decreases

11We estimate the unknown functions using a third order kernel proposed in Pagan and Ullah (1999, Section
2.7.2). Bandwidth is chosen to be propositional to n−1/8. We also use a weighting function w(x) =
min{K, ‖x‖3} for some large K.
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roughly at rate n−1/3. On the other hand, although the mis–specified MLE converges faster

(at rate n−1/2), it does not converge to the true value. The bias has significant size at all

sample sizes. In particular, the magnitude of the bias is increasing in r. When r is large,

hypothesis tests based on mis–specified MLE could be misleading, e.g when r = 0.7 and

n = 3, 000, the bias is almost five times of the standard deviation.

7. DICUSSIONS

7.1. A Comparison with Aradillas-Lopez (2010). A similar two–by–two static game of

incomplete information is also studied in Aradillas-Lopez (2010), which adopts a different

set of assumptions and proposes a novel identification and estimation strategy.

Aradillas-Lopez (2010) assumes a similar linear payoff structure and allows private

signals to be correlated, but differs from the present paper in several aspects. First, Aradillas-

Lopez (2010) and the present paper focus on two different econometric models due to

different equilibrium solution concepts adopted. Aradillas-Lopez (2010) applies a belief

concept introduced by Aumann (1987), which gives the following simultaneous equations

structure:12

Y1 = 1 {X′1β1 + α1P1(Y2 = 1|Y1 = 1, X)−U1 ≥ 0} ,

Y2 = 1 {X′2β2 + α2P2(Y1 = 1|Y2 = 1, X)−U2 ≥ 0} ,
(11)

where Pj(Y−j = 1|Yj = 1, X) are equilibrium beliefs of player j about his rival’s equilib-

rium action. In contrast, we follow BNE solution concept, which requires player j’s beliefs

to be expectations conditioning on his own private signal, Uj (a detailed definition of BNE

for general Bayesian games can be found in, e.g., Harsanyi, 1967–68; Fudenberg and Tirole,

1991). In the similar game setup, therefore, the BNE solution concept delivers us a different

set of simultaneous equations, which are our Equation (1).

The BNE solution concept has been widely used in many empirical applications of incom-

plete information games, e.g. auctions. Regarding to the literature of discrete games, for

12To simplify the comparison, we assume that all elements in X are publicly observed. Aradillas-Lopez (2010)
allows the publicly observed vector Z to be different from X.
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instance, Bajari, Hong, Krainer, and Nekipelov (2010) studies the strategic stock recommen-

dation behaviors of equity market analysts. In their paper, the utility an analyst receives from

issuing a recommendation is a function of both recommendations issued by other analysts

and his own private payoff shock. If private shocks are correlated and the dependence pattern

is known to all the analysts, then they will exploit their private information as well as the

dependence pattern to form a rational expectation on rivals’ choices.

−1 0 1 2 3
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0.2

0.4

0.6

0.8

1

x2,1

ν1
π1

1

FIGURE 2. ν1(1.5, x2,1; θ0) and π1(1.5, x2,1; θ0)

Figure 2 plots the equilibrium beliefs considered by Aradillas-Lopez (2010) and the

present paper in a game with payoff structure similar to the one specified in Section 6

(r = 0.5 case). Here π1 denotes the equilibrium beliefs P1(Y2 = 1|Y1 = 1, X) in Aradillas-

Lopez (2010). Because ν1 6= π1, Aradillas-Lopez (2010) and the present paper would

generate different conditional probability distributions of players’ choices Y = (Y1, Y2)

even in the games with the same setup. Not surprisingly, when we generate data based on

Equation (1), the estimator suggested by Aradillas-Lopez (2010) could be inconsistent.13

For illustration, see Figure 3.14

13Not vice versa, however, our estimator is still consistent when the data are generated from the econometric
model in Aradillas-Lopez (2010), since our bounds are still valid. See Table 3 in Appendix D for more detailed
results.
14We generate covariates from the following distribution (other configurations are the same as in Section 6){

X1,1 ∼ U[0, 2], X2,1 ∼ U[−1, 1], with p. 0.8,
X1,1 ∼ N(0, 4), X2,1 ∼ N(0, 4), with p. 0.2.
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FIGURE 3. Data generated from a BNE

Second, Aradillas-Lopez (2010) assumes that the private signals are independent of

publicly observed X variables, which is stronger than what is assumed in the present paper

— the conditional median independence of private signals given X. As a tradeoff, our

maximum score type estimator is endowed with a slower convergence rate than the one

proposed by Aradillas-Lopez (2010). As pointed out by Liu, Vuong, and Xu (2012), the

independence between X and private signals imposes testable restrictions on the observed

choices, i.e.,

P(Yj|X = x) ≥ P(Yj|X = x′) for j = 1, 2.

=⇒ P(Y1 = 1, Y2 = 1|X = x) ≥ P(Y1 = 1, Y2 = 1|X = x′). (12)

In contrast, the conditional median independence assumption is somewhat the “minimum”

requirement for the identification of the binary games without imposing any restriction on

the data observed. In a real data application, if the restriction (12) is rejected by statistical

tests, then our conditional median dependence assumption would be more applicable.
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7.2. Strategic Complementarity. Throughout this paper, we focus on the negative strate-

gic effect case (αj ≥ 0). However, our method can easily extend to binary games of strategic

complementarity (αj ≤ 0).15

When αj ≤ 0, the existence of MSBE is ensured by Assumption B only, since Assump-

tion A is implied. Moreover, the MSBE can be written as

Yj = 1
[
Uj ≤ X′jβ j − αjνj (X)

]
,

and νj satisfies P
(
ν1

j (X) ≤ νj (X) ≤ ν0
j (X)

)
= 1. Note that we switch the positions

of upper and lower bounds in Equation (5) due to the fact αj ≤ 0. It means that the sign

of αj can be revealed by the relative order of the two bounds. Hereafter, the analysis of

identification and estimation of the structural parameters similarly follows Sections 3 and 4.
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APPENDIX A. PROOFS

A.1. Proof of Lemma 1. We apply Athey (2001, Theorem 1) to show the existence of MSBE in our

game. Note that the action space is finite in our setup. By Assumption A, SCC is satisfied, and the

types have joint density with respect to Lebesgue measure. Thus it suffices to show that each player’s

interim payoff function is bounded in his type for all monotone pure strategies of other players. The

payoff function in our model is a linear function in Uj, which thereafter is not bounded. We could,
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however, apply a monotone transformation on the payoff function:

π∗j (y−j, xj, Uj) =


αj − αjyj if x′jβ j −Uj > αj,

x′jβ j − αjyj −Uj if − αj ≤ x′jβ j −Uj ≤ αj,

−αj − αjyj if x′jβ j −Uj < −αj.

to be the player j’s payoff of choosing 1, given j’s opponent chooses y−j ∈ {0, 1}. Note that for any

x and realization of U, each player will make the same choice under both πj and π∗j . Hence, this

transformation of payoff function doesn’t change the equilibria solution set for each x ∈ X . Using

the new payoff functions π∗j , it is then routine to verify all the conditions of Athey (2001, theorem

1), ensuring the existence of MSBE.

A.2. Proof of Theorem 1. When P(U−j ≤ t|X = x, Uj = uj) is continuous in uj for any t ∈ R

and x ∈ X , the result of Theorem 1 holds by the arguments in section 3. Without the continuity, the

conclusion still holds. To see this, let

ν+j (x) = lim
uj↓u∗j (x)

P
(
Y−j = 1|X = x, Uj = uj

)
, ν−j (x) = lim

uj↑u∗j (x)
P
(
Y−j = 1|X = x, Uj = uj

)
.

Under Assumption B, P
(
Y−j = 1|X = x, Uj = uj

)
is a non–increasing function in uj. Hence ν+j (x)

and ν−j (x) are well defined and ν+j (x) ≤ ν−j (x). By the definition of MSBE, for all uj > u∗j (x)

x′jβ j − αjP
(
Y−j = 1|X = x, Uj = uj

)
− uj ≤ 0.

Hence

lim
uj↓u∗j (x)

{
x′jβ j − αjP

(
Y−j = 1|X = x, Uj = uj

)
− uj

}
= x′jβ j − αjν

+
j (x)− u∗j (x) ≤ 0.

Similarly, x′jβ j − αjν
−
j (x)− u∗j (x) ≥ 0. It implies that ν+j (x) ≥ ν−j (x). So we have ν+j (x) =

ν−j (x). Hence

x′jβ j − αjP
(

Y−j = 1|X = x, Uj = u∗j (x)
)
− u∗j (x) = 0.

Thus

Yj = 1[Uj ≤ u∗j (x)] = 1
[
Uj ≤ x′jβ j − αjP

(
Y−j = 1|X = x, Uj = u∗j (x)

)]
. �
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A.3. Proof of Lemma 2. We show the first equation in the statement of Lemma 2 holds. The second

one holds by similar reasoning. Suppose that the first condition in Assumption F is satisfied, then,

ν0
1 (x) = P (U2 ≤ u∗2 |X = x, Y1 = 0) = P

(
U2 ≤ x′2β2 − α2ν2|X = x, Y1 = 0

)
(i)
≥ P

(
U2 ≤ x′2β2 − α2|X = x, Y1 = 0

)
= P

(
U2 ≤ x′2β2 − α2|X = x, U1 ≥ u∗1(x)

)
(ii)
≥ P

(
U2 ≤ x′2β2 − α2|X = x, U1 ≥ x′1β1

)
.

Inequality (i) hold because ν2 ≤ 1 and (ii) holds because u∗1 ≤ x′1β1 and Assumption B. Hence, for

any ε ∈ (0, 1),

P
(
U2 ≤ t− α2|X1 = x1, X′2β2 = t, U1 ≥ x′1β1

)
≤ E

[
ν0

1 (X) |X1 = x1, X′2β2 = t
]

≤ (1− ε)P
(
ν0

1(X) ≤ 1− ε|Xj = xj, X′2β2 = t
)
+ P

(
ν0

1(X) > 1− ε|Xj = xj, X′2β2 = t
)

= −εP
(
ν0

1(X) ≤ 1− ε|Xj = xj, X′2β2 = t
)
+ 1.

Let t→ +∞, under Assumption F we have

lim
t→+∞

P
(
ν0

1(X) ≤ 1− ε|Xj = xj, X′2β2 = t
)
= 0.

A.4. Proof of Theorem 2. This proof simply follows from the proof of Manski (1985, Lemma 2).

Fix X̃1 = x̃1 and X̃2 = x̃2 be arbitrary values. It suffices to show that for any (b̃1, a1) 6=
(β̃1, α1), either P(X1,1 + x̃′1b̃1 − a1ν1

1 ≥ 0 > X1,1 + x̃′1 β̃1 − α1ν0
1 |X̃1 = x̃1, X̃2 = x̃2) > 0 or

P(X1,1 + x̃′1 β̃1 − α1ν0
1 ≥ 0 > X1,1 + x̃′1b̃1 − a1ν1

1 |X̃1 = x̃1, X̃2 = x̃2) > 0. Equivalently, we will

show that, either

P(α1ν0
1 − x̃′1 β̃1 > X1,1 ≥ a1ν1

1 − x̃′1b̃1|X̃1 = x̃1, X̃2 = x̃2) > 0,

or

P(a1ν0
1 − x̃′1b̃1 > X1,1 ≥ α1ν1

1 − x̃′1 β̃1|X̃1 = x̃1, X̃2 = x̃2) > 0.

Suppose (b̃1, a1) 6= (β̃1, α1). Consider the following two cases:

Case 1. b̃1 6= β̃1. By Assumption D, there exists x̃1 ∈ X1 such that x̃′1b̃1 6= x̃′1 β̃1. W.L.O.G.,

assume x̃′1b̃1 > x̃′1 β̃1. Let ε ∈ R+ such that x̃′1b̃1 − ε > x̃′1 β̃1 + ε. By Lemma 2, for any
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x1,1 ∈ (−x̃′1b̃1 + ε,−x̃′1 β̃1 − ε), there exists a t > 0 such that

P
(

max
{

α1ν0
1 , a1ν1

1

}
< ε|X1 = x1, X̃2 = x̃2, X2,1 ≤ −t

)
= 1,

where x1 = (x1,1, x̃1). Note that the value t depends on x1. Then

P(α1ν0
1 (X)− X̃′1 β̃1 > X1,1 ≥ a1ν1

1 (X)− X̃′1b̃1|X̃1 = x̃1, X̃2 = x̃2)

≥ P(α1ν0
1 (X)− X̃′1 β̃1 > X1,1 ≥ a1ν1

1 (X)− X̃′1b̃1; X2,1 ≤ −t(X1)|X̃1 = x̃1, X̃2 = x̃2)

≥ P(X1,1 ∈ [−x̃′1b̃1 + ε,−x̃′1 β̃1 − ε); X2,1 ≤ −t(X1)|X̃1 = x̃1, X̃2 = x̃2) > 0,

where the last inequality holds by Assumption E.

Case 2. b̃1 = β̃1. Then α1 6= a1. W.L.O.G., assume that α1 > a1. Let η ∈ R+ such that

α1 − α1η > a1. By Lemma 2, for any x1,1 ∈ (−x̃′1b̃1 + a1,−x̃′1 β̃1 + α1 − α1η), there exists an

s > 0 such that

P
(

min
{

ν0
1 , ν1

1

}
> 1− η|X1 = x1, X̃2 = x̃2, X2,1 ≥ s

)
= 1.

Again, the value s depends on x1. Then

P
(

α1ν0
1 (X)− x̃′1 β̃1 > X1,1 ≥ a1ν1

1 (X)− x̃′1b̃1|X̃1 = x̃1, X̃2 = x̃2

)
≥ P

(
α1ν0

1 (X)− x̃′1 β̃1 > X1,1 ≥ a1ν1
1 (X)− x̃′1 β̃1; X2,1 ≥ s(X1)|X̃1 = x̃1, X̃2 = x̃2

)
≥ P

(
X1,1 ∈

[
a1 − x̃′1 β̃1, α1 − α1η − x̃′1 β̃1

)
; X2,1 ≥ s(X1)|X̃1 = x̃1, X̃2 = x̃2

)
> 0.

The statement in the Lemma thus follows by combining case 1 and 2.

APPENDIX B. PROOFS IN ESTIMATION

B.1. Proof of Lemma 3. It suffices to show that for j = 1, 2 and any θj 6= θ0,j,

Egj
(
Z; θ0,j, vj, δj, fX

)
> Egj

(
Z; θj, vj, δj, fX

)
.
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For the simplicity of notation, we only provide a proof for j = 1. Notice that the support X can

be divided into three regions, A, B and C, as follows:

A =
{

x : x′1β1 − α1ν0
1 (x) < 0

}
,

B =
{

x : x′1β1 − α1ν1
1 (x) ≥ 0

}
,

C =
{

x : x′1β1 − α1ν0
1 (x) ≥ 0 > x′1β1 − α1ν1

1 (x)
}

.

For any x ∈ A, because p1 (x) = P (U1 ≤ X′1β1 − ν1 (X) |X = x) ≤ P (U1 ≤ 0|X = x) =

1/2, hence for any x ∈ A,

E
{

g1 (Z; θ0,1, v1, δ1, fX)
∣∣X = x

}
= (1− 2p1 (x)) fX(x)×w1(x) = |2p1 (x)− 1| fX(x)×w1(x).

Similarly, we have for any x ∈ B, p1(x) ≥ 1/2 and therefore

E
{

g1 (Z; θ0,1, v1, δ1, fX)
∣∣X = x

}
= (2p1(x)− 1) fX(x)×w1(x) = |2p1 (x)− 1| fX(x)×w1(x).

and for any x ∈ C

E
{

g1 (Z, α1, β1, v, δ, fX)
∣∣X = x

}
= (2p1(x)− 1) fX(x)×

[
2δj(x)− 1

]
× w1(x)

= (2p1(x)− 1)× fX(x)× sgn (2p1(x)− 1)× w1(x) = |2p1 (x)− 1| fX(x)× w1(x).

From above discussion, we have that Eg1 (Z; θ0,1, v1, δ1, fX) =
∫
|2p1 (x)− 1| f 2

X(x)×w1(x)dx.

Now consider any θ1 6= θ0,1. Similarly, we define three regions, Ã, B̃ and C̃ as follows:

Ã =
{

x : x′1b1 − a1ν0
1 (x) < 0

}
,

B̃ =
{

x : x′1b1 − a1ν1
1 (x) ≥ 0

}
,

C̃ =
{

x : x′1b1 − a1ν0
1 (x) ≥ 0 > x′1b1 − a1ν1

1 (x)
}

.

Note that A ∩ B̃ 6= ∅ and B ∩ Ã 6= ∅.

For any x ∈ Ã,

E
{

g1 (Z; θ1, v1, δ1, fX)
∣∣X = x

}
= − (2p1(x)− 1) fX(x)×w1(x) ≤ |2p1(x)− 1| fX(x)×w1(x).
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Similarly, E
{

g1 (Z; θ1, v1, δ1, fX)
∣∣X = x

}
≤ |2p1(x)− 1| × fX(x)w1(x) for all x ∈ B̃ and

x ∈ C̃. Thus we have

E
{

g1 (Z; θ1, v1, δ1, fX)
∣∣X = x

}
≤ E

{
g1 (Z; θ0,1, v1, δ1, fX)

∣∣X = x
}

for any x in the support.

Because for any x ∈ A ∩ B̃, p1(x) < 1/2, and

E
{

g1 (Z; θ1, v1, δ1, fX)
∣∣X = x

}
= (2p1(x)− 1) fX(x)× w1(x)

< |2p1(x)− 1| fX(x)× w1(x) = E
{

g1 (Z; θ0,1, v1, δ1, fX)
∣∣X = x

}
.

The inequality holds strictly as long as fX(x) > 0 and w1(x) > 0 for all x ∈ A ∩ B̃. Therefore

E {g1 (Z; θ1, v1, δ1, fX)} < E {g1 (Z; θ0,1, v1, δ1, fX)}. �

B.2. Proof of Theorem 3. By Lemmas 5 and 6,

sup
θ∈Θ

∣∣Un
(
θ; λ̂
)
− L (θ)

∣∣ = op (1) .

The consistency of the estimator then follows from Theorem 2.1 in Newey and McFadden (1994). �

Let ξ̂ j(x) =
[
2p̂j(x)− 1

]
f̂X(x). Let further ξ̃ j(x) = ξ̂ j(x) + [ξ j(x) − ξ̂ j(x)] × 1[|ξ̂ j(x) −

ξ j(x)| > n−γ] and δ̃j(x) = 1[ξ̃ j(x) ≥ 0]. Then ξ̃ j is an (infeasible) estimator of ξ j such that

supx |ξ̃ j(x)− ξ j(x)| ≤ n−γ a.s..

Similarly, let ν̃0
j (x) = ν̂0

j (x) + [ν0
j (x) − ν̂0

j (x)] × 1
{∣∣ν̂0

j (x) − [ν0
j (x) − n−γ]

∣∣ > n−γ
}

and

ν̃1
j (x) = ν̂1

j (x) + [ν1
j (x)− ν̂1

j (x)]× 1
{∣∣ν̂1

j (x)− [ν1
j (x) + n−γ]

∣∣ > n−γ
}

. Moreover, we denote

λ̃ ≡ (δ̃, ṽ).

B.3. Proof of Lemma 4. Remember vj(t) = (ν0
j (·)− t, ν1

j (·) + t). Let Vn(θ, t) = Un(θ; δ, v(t)).

First, we have

Un(θ; δ̂, v̂)−Un(θ; δ, v(0)) = Un(θ; δ̂, v̂)−Un(θ; δ̂, ṽ)

+ Un(θ; δ̂, ṽ)−Un(θ; δ̂, v(0)) + Un(θ; δ̂, v(0))−Un(θ; δ, v(0))

≥ Un(θ; δ̂, v̂)−Un(θ; δ̂, ṽ) + Un(θ; δ̂, v(0))−Un(θ; δ, v(0)),
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where the last step comes from Lemma 11. Then, by Lemmas 7 and 8, we have

sup
θ∈Θ
|Un(θ; δ̂, v̂)−Un(θ; δ̂, ṽ)| ≤ op(n−2/3),

sup
θ∈Θ
|Un(θ; δ̂, v)−Un(θ; δ, v)| ≤ op(n−2/3).

Let Tn ≡ supθ∈Θ

{
|Un(θ; δ̂, v̂)−Un(θ; δ̂, ṽ)|+ |Un(θ; δ̂, v)−Un(θ; δ, v)|

}
, which is op(n−2/3).

Thus

Un(θ; δ̂, v̂)−Un(θ; δ, v(0)) ≥ −Tn.

By similar arguments as above and let Γn ≡ supθ∈Θ

{
|Un(θ; δ̂, v̂)−Un(θ; δ̂, ṽ)|+ |Un(θ; δ̂, v(2n−γ))−

Un(θ; δ, v(2n−γ))|
}

, we can show that

Un(θ; δ̂, v̂)−Un(θ; δ, v(2n−γ)) ≤ Γn. �

We define some notation before proceed the proof for Theorem 4. Define

g̃(Zi, Z`; θ, λ)

=
1
2 ∑

j=1,2

[
(2Yj` − 1)Kh(X`, Xi)ϑj(Xi; θ, λ) + (2Yji − 1)Kh(Xi, X`)ϑj(X`; θ, λ)

]
, (13)

and ḡ(Zi; θ, λ) = E[g̃(Zi, Z`; θ, λ)|Zi]. Let G = {ḡ(·; θ, λ) : θ ∈ Θ} be a class of functions

indexed by θ. Let G be its envelope function. Note also that EG2
< ∞.

To simply notation, let Vn(θ, t) = Un(θ; δ, v(t)) and V(θ; t) = EVn(θ; t). It then follows that

V(θ, 0) = EUn(θ; δ, v).

B.4. Proof of Theorem 4. The proof consists following two steps. In step 1, we establish the
3
√

n–convergence of our estimator; in step 2, we show the weak convergence of the rescaled sample

criterion function. Our proof is an extension of Nolan and Pollard (1988, Theorem 5).
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Step 1. Recall that ḡ(Zi; θ, λ) = E[g̃(Zi, Z`; θ, λ)|Zi]. By the symmetry of g̃,

√
n

(
1

n(n− 1) ∑
i 6=`

g̃(Zi, Z`; θ, λ)− V(θ, 0)

)

= 2
√

n

(
1
n ∑

i
ḡ(Zi; θ, λ)− V(θ, 0)

)
+

√
n

n(n− 1) ∑
i 6=`

˜̃g(Zi, Z`; θ, λ), (14)

where

˜̃g(Zi, Z`; θ, λ) = g̃(Zi, Z`; θ, λ)− ḡ(Zi; θ, λ)− ḡ(Z`; θ, λ) + V(θ, 0).

Note that G is actually a sum of two V–C class of functions and we can apply the maximal inequality

of Kim and Pollard (1990, Section 3.1) to the first term on the right hand side of Equation (14), i.e.

there exists a universal constant J such that

√
nE sup

θ

∣∣∣∣ 1n ḡ(Zi, θ, λ)− V(θ, 0)
∣∣∣∣ < J

√
EG2

The second term on the right hand side of Equation (14) is a degenerated U–process. By Lemma 10,

it is of order Op(1/
√

nhd) and hence is negligible. As a result, we can conclude that

√
nE sup

θ

(
1

n(n− 1) ∑
i 6=`

g̃(Zi, Z`; θ, λ)− V(θ, 0)

)
≤ J
√

EG2
. (15)

With Equation (15) in hand, and following the exact argument of Kim and Pollard (1990, Lemma

4.1), we know that for each ε > 0, there exist random variables {Mn} of order Op(1) independent

with θ, such that

|[Vn(θ, t)− V(θ, t)]− [Vn(θ0, 0)− V(θ0, 0)]| ≤ ε ‖θ − θ0‖2 + εt2 + n−
2
3 M2

n (16)

for all (θ, t) ∈ Θ×R, where V(θ; t) = EVn(θ; t) and Vn(θ, t) = Un(θ; δ, v(t)).

By Lemma 12, there exist ε1, ε2 > 0 such that V(θ̂, 2n−γ)−V(θ0, 0) ≤ ε1hR (‖θ − θ0‖+ 2n−γ)−
2ε2

(
‖θ − θ0‖2 + 4n−2γ

)
. Hence, if we choose ε = ε2 and (θ, t) = (θ̂, 2n−γ) in Equation (16),

we have

Vn(θ̂, 2n−γ)− Vn(θ0, 0) ≤ ε1hR ∥∥θ̂ − θ0
∥∥− ε2

∥∥θ̂ − θ0
∥∥2

+ 2ε1n−γhR − 4ε2n−2γ + n−
2
3 M2

n.
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Moreover, by Lemma 4, we have

Vn(θ̂, 2n−γ) = Un(θ̂; δ, v(2n−γ)) ≥ Un(θ̂; δ̂, v̂)− Γn

≥ Un(θ0; δ̂, v̂)− Γn ≥ Un(θ0; δ, v(0))− Γn − Tn = Vn(θ0, 0)− Γn − Tn.

Note that ε1n−γhR = o(n−2γ) = o(n−2/3) by Assumption O. Hence

ε2
∥∥θ̂ − θ0

∥∥2 − ε1hR ∥∥θ̂ − θ0
∥∥ ≤ n−2/3M2

n + Γn + Tn + 2ε1n−γhR = Op(n−2/3),

from which we obtain a 3
√

n rate of convergence for our estimator.

Step 2. Given we have established the 3
√

n convergence rate, we now focus on the 3
√

n–neighborhood

of θ0. Let Zn(t) = n2/3 [Un(θ0 + tn−1/3; λ)−Un(θ0; λ)
]
. By Kim and Pollard (1990, Theorem

2.7), it suffices to show that

Zn(t)
d→W(t)− 1

2
t′Vt.

Similarly as before, we define

fi,`,n(t) =
n

1
6

2 ∑
j=1,2

(
(2Y` − 1)Kh(X` − Xi)ϑ̄j(Xi; θ0j + tjn−

1
3 )

+(2Yi − 1)Kh(Xi − X`)ϑ̄j(X`; θ0j + tjn−
1
3 )
)

,

and a class of functions: Fn = { fi,`,n : t ∈ Rd}. Let further F̃n = { f̃i,`,n : t ∈ Rd} where

f̃i,`,n(t) = fi,`,n(t)−E[ fi,`,n(t)|Xi]−E[ fi,`,n(t)|X`] + E[ fi,`,n(t)]. (17)

Denote F̃n the envelope function of F̃n.

With these definitions, Zn(t) =
√

n
n(n−1) ∑i 6=` fi,`,n(t) and

Zn −E[Zn] =

√
n

n(n− 1) ∑
i 6=`

f̃i,`,n + 2
√

n

(
1
n ∑

i
E[ f̃i,`,n|Xi]−E[Zn]

)
. (18)

Applying Lemma 9 and by a similar argument as in Lemma 10,
√

n
n(n−1)E sup f̃∈F̃ |∑i 6=` f̃i,`,n|

is of order (nhd)−1/2.16 So the first term in Equation (18) is negligible. The distributional limit of

Zn −E[Zn] is then determined by the second term in Equation (18). By Nolan and Pollard (1988,

16The extra n1/6 re–norming appears in fi,`,n is taken care of by the n−1/3 term inside the sign functions.
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Theorem 5), it is a mean zero Guassian process with covariance kernel defined by

H(s, t) = lim
c→∞

2 ∑
j=1,2

E
{

ξ2
j ϑ̄j(X; θ0 + t/c, λj)ϑ̄j(X; θ0 + s/c, λj)

}
.

Following the calculation in Kim and Pollard (1990, Example 6.4), we have E[Zn] = − 1
2 t′Vt and

V = 2n
1
2

∂2E fi,`,n(t)
∂t2

∣∣∣∣
t=0

= 2 ∑
m=0,1

∑
j=1,2

∫
1{x′jβ j − αjvj = 0}

[
κ̇m,j(xj, vj)

′θ0,j
]

fXj,νj(X)(xj, vj)(x′j, vj)
′(x′j, vj)dσm

j .

This implies that Zn
d→ Z ≡ W − 1

2 t′Vt. Given the convergence of Zn and the 3
√

n–convergence

rate of θ̂, by Kim and Pollard (1990, Theorem 2.7), n1/3(θ̂ − θ0) converges in distribution to the

random vector that uniquely maximizes Z(t). �

B.5. Proof of Theorem 5. The proof of Theorem 3 carries through for each θ ∈ Θ̂, which implies

supθ∈Θ̂ ρ
(
θ, ΘI) p→ 0. On the other hand, following the proof of Manski and Tamer (2002,

proposition 3.b), we have supθ∈ΘI ρ
(

θ, Θ̂
) p→ 0.

APPENDIX C. AUXILIARY LEMMAS

Lemma 5. Suppose Assumptions G to K hold. Then

sup
θ∈Θ

∣∣Un
(
θ; λ̂
)
−Un (θ; λ)

∣∣ = op (1) .

Proof. It suffices to show that

sup
θ∈Θ

∣∣Un
(
θ; δ̂, v̂

)
−Un (θ; δ, v̂)

∣∣ = op (1) , (19)

sup
θ∈Θ
|Un (θ; δ, v̂)−Un (θ; δ, v)| = op (1) . (20)

We show Equation (19) first. Note that Sgn(·) only takes value −1, 0 or 1, hence

sup
θ∈Θ

∣∣Un
(
θ; δ̂, v̂

)
−Un (θ; δ, v̂)

∣∣ ≤ 2
n(n− 1)

n

∑
i=1

n

∑
` 6=i

2

∑
j=1
|Kh(X` − Xi)| ×

∣∣δ̂j(Xi)− δj(Xi)
∣∣ ,
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then we have

E sup
θ∈Θ

∣∣Un
(
θ; δ̂, v̂

)
−Un (θ; δ, v̂)

∣∣ ≤ 2
2

∑
j=1

E
{
|Kh (X` − Xi)| ×

∣∣δ̂j(Xi)− δj(Xi)
∣∣} ,

where ` 6= i. It suffices to show that for almost all x ∈ X , there is

E
{
|Kh(X` − x)| ×

∣∣δ̂j(x)− δj(x)
∣∣}→ 0.

Note that

E
{
|Kh(X` − x)| ×

∣∣δ̂j(x)− δj(x)
∣∣} ≤ E |Kh(X` − x)| → f (x)

∫
|K(u)|du < ∞.

By dominant convergence theorem, it suffices to show that E
(∣∣δ̂j(x)− δj(x)

∣∣ ∣∣X`

)
→ 0. Because

E
(∣∣δ̂j(x)− δj(x)

∣∣ ∣∣X`

)
= P

([
2p̂j(x)− 1

]
f̂X(x) ≥ 0 >

[
2pj(x)− 1

]
fX(x)

∣∣X`

)
+ P

([
2pj(x)− 1

]
fX(x) ≥ 0 >

[
2p̂j(x)− 1

]
f̂X(x)

∣∣X`

)
,

thus, by Assumptions I and K,

P
([

2p̂j(x)− 1
]

f̂X(x) ≥ 0 >
[
2pj(x)− 1

]
fX(x)

∣∣X`

)
= P

(
1

n− 1

n

∑
q 6=i,`

{
(2Yjq − 1)× Kh(Xq − x)

}
≥ 0 >

[
2pj(x)− 1

]
fX(x)

)
+ op(1)→ 0.

Similarly,

P
([

2pj(x)− 1
]

fX(x) ≥ 0 >
[
2p̂j(x)− 1

]
f̂X(x)

∣∣X`

)
→ 0.

A similar argument holds for Equation (20), which concludes the proof. �

Lemma 6. Suppose Assumptions G to K are satisfied, then

sup
θ∈Θ
|Un (θ; λ)− L (θ)| = op(1).

Proof. Recall that Un(θ; λ) = 1
n(n−1) ∑ ∑i 6=` g̃(Zi, Z`; θ, λ) is a U–process (g̃ is defined in Equation

13). It is easy to verify that the function class G = {g̃ : θ ∈ Θ} has an integrable envelope function

G̃(Zi, Z`; θ, λ) such that EG̃ < ∞. Since ϑ is a sum of indicator functions of θ, the VC index of G

is bounded by a constant that only depends on the dimension of regressors d. Then by Van der Vaart
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and Wellner (1996, Theorem 2.6.7), its Lr covering number (r ≥ 1) is bounded by a constant only

depends on d. Then it follows from Theorem 7 of Nolan and Pollard (1987) that

sup
θ∈Θ
|Un (θ; λ)−EUn (θ; λ)| = op(1).

To conclude the proof, note that θ only appears in ϑ, hence there exists some constant C such that

sup
θ∈Θ
|L(θ)−EUn (θ; λ) | ≤ CE| f̂ (Xi)− f (Xi)|

p→ 0. �

Lemma 7. Suppose that Assumptions G and L to O hold. Then we have

sup
θ∈Θ
|Un(θ; δ̂, v)−Un(θ; δ̃, v)| ≤ op(n−2/3),

sup
θ∈Θ
|Un(θ; δ̂, v̂)−Un(θ; δ̂, ṽ)| ≤ op(n−2/3).

Proof. Because of similarity of the proof, here we only show the first inequality. First, because

sup
θ∈Θ
|Un(θ; δ̂, v)−Un(θ; δ̃, v)|

≤ 2
n(n− 1)

n

∑
i=1

n

∑
` 6=i

2

∑
j=1
|Kh(X` − Xi)| × 1[|ξ̂ j(Xi)− ξ j(Xi)| > n−γ].

By Assumption N,

E sup
θ∈Θ
|Un(θ; δ̂, v)−Un(θ; δ̃, v)| ≤ 2K

hd E

{
2

∑
j=1

1[|ξ̂ j(Xi)− ξ j(Xi)| > n−γ]

}
.

Then it suffices to show that n2/3h−dP
(
|ξ̂ j(Xi)− ξ j(Xi)| > n−γ

)
→ 0, which follows from

Lemma 14. �

Lemma 8. Suppose that Assumptions G and L to O hold, then

sup
θ∈Θ;t∈R

|Un(θ; δ̃, v(t))−Un(θ; δ, v(t))| ≤ op(n−2/3).
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Proof. Because

sup
θ∈Θ;t∈R

|Un(θ; δ̃, v(t))−Un(θ; δ, v(t))|

≤ 2
n

n

∑
i=1

2

∑
j=1

∣∣ξ̂ j(Xi)
∣∣× ∣∣1[ξ̃ j(Xi) ≥ 0]− 1[ξ j(Xi) ≥ 0]

∣∣
≤ 2

n

n

∑
i=1

2

∑
j=1

∣∣ξ̂ j(Xi)
∣∣× 1[|ξ j(Xi)| ≤ n−γ]× 1[|ξ̃ j(Xi)| ≤ n−γ].

The last step comes from the fact supx |ξ̃ j(x)− ξ j(x)| ≤ n−γ.

Thus by Assumption M,

E sup
θ∈Θ;t∈R

|Un(θ; δ̃, v(t))−Un(θ; δ, v(t))| ≤ 2n−γ
2

∑
j=1

P
(
|ξ j| ≤ n−γ

)
= O(n−2γ).

The right hand side is o(n−2/3) by Assumption O. This concludes the proof.

Lemma 9. Let ϑ̄j(X; θj) = ϑj(X; θj, λj)− ϑj(X; θ0,j, λj). Suppose that Assumptions L and M hold,

then for any bounded functions s(·) : X → R and any t ∈ Rd,

n1/3
∫

s(X)ϑ̄2(X, θ0 + t/n1/3) f (X)dX = O(‖t‖).

Proof. Denote X∗j = (X′j, ν0
j ), t = (t′1, t′2)

′, tj ∈ Rdj . By the functional form of ϑ̄ and the

assumption that s(·) is bounded, it is sufficient to verify that

n1/3
∫ {

1[X∗j θ0j + X∗j
tj

3
√

n
≥ 0]− 1[X∗j θ0j ≥ 0]

}
f (X)dX = O(‖tj‖).

The integral is bounded by

n1/3[P(−X∗j tj/n1/3 ≤ X∗j θ0j ≤ 0) + P(−X∗j tj/n1/3 ≥ X∗j θ0j ≥ 0)]

By Assumptions L and M, it is of order O(‖tj‖). �

Lemma 10. Suppose that Assumptions G and L to N hold, then

Xn ≡
√

n
n(n− 1)

E sup
θ∈Θ
|∑

i 6=`

˜̃gi,`,n| = O
(

1√
nhd

)
.
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Proof. Write ˜̃gi,` for ˜̃gi,`(Zi, Z`; θ, λ). Let G̃ = { ˜̃gi,` : θ ∈ Θ} be the class of functions of ˜̃gi,` and
˜̃G be its envelop function. Note that

√
n

n(n−1) ∑i 6=`
˜̃gi,` is a degenerated U–process. By Nolan and

Pollard (1987, Theorem 6), Xn is bounded by n−1/2C1(E
˜̃G2)1/2[1 + (EJ2

n(1))1/2], where C1 is

some universal constant and

Jn(1) =
∫ 1

0
log N2(x, Tn, G̃ , ˜̃G)dx,

with N2(x, Tn, G̃ , ˜̃G) being the L2 covering number and Tn being the empirical measure on all pairs

(Zi, Z`) in the definition of gi,`. Hence it is sufficient to show that E ˜̃G2 = O
(
h−d) and Jn(1) is

bounded.

Consider E ˜̃G2 first. Remember that

˜̃g(Zi, Z`; θ, λ) = g̃(Zi, Z`; θ, λ)− ḡ(Zi; θ, λ)− ḡ(Z`; θ, λ) + V(θ, 0).

It is not hard to verify that there exists some positive constant C2 such that

E ˜̃G2 ≤ C2E[K2
h(X` − Xi)ϑ̄

2(Xi, θ)]

≤ C2h−d
∫ ∫

K2(u)ϑ̄2(Xi, θ) f (Xi + uh) f (Xi)dudXi (21)

The right hand side is O(h−d) and since f is bounded and
∫
|K(u)|du < ∞.

Now we consider the term Jn(1). By smoothness Assumptions L to N, we know that as an

argument of ˜̃gi,`, θ either appears in an indicator function (through the term ϑ̄) or appears in a

bounded and continuous function (through the expectations of ϑ̄). By Nolan and Pollard (1987,

Lemma 16, 18, and 19), ˜̃G is an Euclidean class and hence Jn(1) is finite. �

Lemma 11. Suppose that Assumptions A to G and L to O hold. Then ∀θ ∈ Θ,

Un(θ; δ̂, v(0)) ≤ Un(θ; δ̂, ṽ) ≤ Un(θ; δ̂, v(2n−γ)).
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Proof. Write ξ̂ ji for ξ̂ j(Xi). Note that when ν̃0
j ≤ ν̃1

j , we have

Un(θ; δ̂, ṽ) = Ln(a, b; p̂, f̂X, δ̂, ṽ)

=
1
n

n

∑
i=1

2

∑
j=1

ξ̂ j(Xi)
{

1[ξ̂ j(Xi) ≥ 0] sgn(X′jibj − αjν̃
0
j ) + 1[ξ̂ j(Xi) < 0] sgn(X′jibj − αjν̃

1
j )
}

=
1
n

n

∑
i=1

2

∑
j=1

ξ̂ ji sgn(ξ̂ ji)−
2
n

n

∑
i=1

2

∑
j=1

ξ̂−ji ×
{

1
[

X′jibj − ajν̃
1
j (Xi) ≥ 0

]}

− 2
n

n

∑
i=1

2

∑
j=1

ξ̂+ji ×
{

1
[

X′jibj − ajν̃
0
j (Xi) ≤ 0

]}
,

where ξ̂−ji = −min{ξ̂ ji, 0} and ξ̂+ji = max{ξ̂ ji, 0}.
By construction, ν̃0

j ≤ ν0
j ≤ ν1

j ≤ ν̃1
j . Thus

Un(θ; δ̂, ṽ)−Un(θ; δ̂, v) =
2
n

n

∑
i=1

2

∑
j=1

ξ̂−i ×
{

1
[

ajν
1
j (Xi) ≤ X′jibj < ajν̃

1
j (Xi)

]}

+
2
n

n

∑
i=1

2

∑
j=1

ξ̂+i ×
{

1
[

ajν̃
0
j (Xi) < X′jibj ≤ ajν

0
j (Xi)

]}
≥ 0.

Similarly, we can show Un(θ; δ̂, ṽ) ≤ Un(θ; δ̂, v(2n−γ)). �

Lemma 12. Suppose that Assumptions A to G and L to O hold. Thus, there exist ε1, ε2 ∈ R+ such

that

V(θ̂, 2n−γ)− V(θ0, 0) ≤ ε1hR(‖θ̂ − θ0‖+ 2n−γ)− 2ε2

(∥∥θ̂ − θ0
∥∥2

+ 4n−2γ
)

Proof. First, by Taylor expansion,

V(θ, t)− V(θ0, 0) = Vθ(θ0, 0)(θ − θ0) + Vt(θ0, 0)× t

+ (θ − θ0)
′Vθθ(θ

†, t†)(θ − θ0) + Vtt(θ
†, t†)t2 + 2(θ − θ0)

′Vθt(θ
†, t†)t
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where (θ†, t†) between (θ0, 0) and (θ, t). Because Vθθ , Vθt and Vtt are continuous in a neighborhood

of (θ0, 0) and strictly negative definite at (θ0, 0), then

(θ − θ0)
′Vθθ(θ

†, t†)(θ − θ0) + Vtt(θ
†, t†)t2 + 2(θ − θ0)

′Vθt(θ
†, t†)t ≤ −2ε2

(
‖θ − θ0‖2 + t2

)
for some ε2 > 0 in a neighborhood of (θ0, 0). Thus we have

V(θ̂, 2n−γ)− V(θ0; 0) ≤ V ′θ(θ0, 0)(θ̂ − θ0) + Vt(θ0, 0)× 2n−γ − 2ε2

(∥∥θ̂ − θ0
∥∥2

+ 4n−2γ
)

.

It remains to show that ‖Vθ(θ0, 0)‖ ≤ ε1hR and ‖Vt(θ0, 0)‖ ≤ ε1hR for some ε1 > 0.

Let V(θ, t) ≡ ∑j=1,2 E
{

ξ j(X)× ϑj(X; θ, δ, v(t))
}

. Note that

E
{

ξ j(X)× ϑj(X; θ, δ, v(t))
}
= −Eξ j(X)+ 2Eξ j(X)1(X′jbj− ajν

0
j (X)+ ajt ≥ 0)1(ξ j(X) ≥ 0)

+ 2Eξ j(X)1(X′jbj − ajν
1
j (X)− ajt ≥ 0)1(ξ j(X) < 0).

Let ξ̄+j (xj, vj) = E
[
ξ+j (X)|Xj = xj, ν0

j (X) = vj

]
and ξ̄−j (xj, vj) = E

[
ξ−j (X)|Xj = xj, ν1

j (X) = vj

]
.

Thus

V θ(θ0, 0) = 2
2

∑
j=1

(
I + ‖θ0‖−2θ0θ′0

) ∫
1
(

x′jbj − ajvj = 0
)

ξ̄+j (xj, vj) fXj,ν0
j (X)(xj, vj)(x′j, vj)

′dσ0

− 2
2

∑
j=1

(
I + ‖θ0‖−2θ0θ′0

) ∫
1
(

x′jbj − ajvj = 0
)

ξ̄−j (xj, vj) fXj,ν1
j (X)(xj, vj)(x′j, vj)

′dσ1 = 0

where σ0, σ1 are surface measures on the corresponding lines and the last step comes from the

fact that along the line [X′jbj − ajν
0
j (X) = 0], we have ξ+j (X) = 0; and along the other line

[X′jbj − ajν
1
j (X) = 0], we have ξ−j (X) = 0. Similarly, Vt(θ0, 0) = 0. So it suffices to show that

‖Vθ(θ0, 0)− V θ(θ0, 0)‖ ≤ ε1hR and ‖Vt(θ0, 0)− V t(θ0, 0)‖ ≤ ε1hR for some ε1 > 0.

Consider

V(θ, t)− V(θ, t) = ∑
j=1,2

E

{∫
Rd
[ξ j(X + hs)− ξ j(X)]K(s)ds× ϑj(X; θ, δ, v(t))

}
.
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Let φj(x) =
∫

Rd ξ j(x + ht)K(t)dt− ξ j(x). By Assumption N, ∀x, n, j, φj(x) ≤ C1× hR for some

C1 ∈ R+. Because

∂E
{

φj(X)× ϑj(X; θ, λ)
}

∂θ
= 2

∂Eφj(X)1(X′jbj − ajν
0
j (X) ≥ 0)1(ξ j(X) ≥ 0)

∂θ

+ 2
∂Eφj(X)1(X′jbj − ajν

1
j (X) ≥ 0)1(ξ j(X) < 0)

∂θ
.

Let further ζ1
n,j(xj, vj) = E

[
φj(X)1(ξ j(X) ≥ 0)|Xj = xj, ν1

j (X) = vj

]
and, similarly, ζ0

n,j(xj, vj) =

E
[
φj(X)1(ξ j(X) < 0)|Xj = xj, ν0

j (X) = vj
]
. Then, by calculation,

∂Eφj(X)1(X′jbj − ajν
0
j (X) ≥ 0)1(ξ j(X) ≥ 0)

∂θ

∣∣∣
θ=θ0

=
∂
∫

R

∫
R

dj ζ0
n,j(xj, vj) fXj,ν0

j (X)(xj, vj)1(x′jbj − ajvj(X) ≥ 0)dxjdvj

∂θ

∣∣∣
θ=θ0

= (I + |θ0|−2θ0θ′0)
∫

R
dj+1

1(x′jβ j − αjvj(x) = 0)ζ0
n,j(xj, vj) fXj,ν0

j (X)(xj, vj)(x′j, vj)
′dσ0.

Since ζ0
n,j(xj, vj) ≤ C1hR for all xj, vj and n. Then there exists a constant C ∈ R+ such that∥∥∥∥∥∂Eφj(X)1(X′jbj − ajν

0
j (X) ≥ 0)1(ξ j(X) ≥ 0)

∂θ

∣∣∣
θ=θ0

∥∥∥∥∥ ≤ ChR.

Therefore, we can choose ε1 > 0 such that
∥∥Vθ(θ0, 0)− V θ(θ0, 0)

∥∥ ≤ ε1hR. By a similar argument,

we also have
∥∥Vt(θ0, 0)− V t(θ0, 0)

∥∥ ≤ ε1hR. �

Lemma 13 (Bernstein’s tail inequality). Let X1, · · · , Xn be independent real-valued random vari-

ables with zero mean, such that ∀ i, |Xi| ≤ M a.s. Defining σ2 = n−1 ∑n
i=1 Var(Xi) and

Sn = ∑n
i=1 Xi. Then for any ε > 0, we have

P

(
1
n
|Sn| > ε

)
≤ 2 exp

(
− nε2

2σ2 + 2
3 Mε

)
.

Lemma 14. Suppose that assumptions G, L to O hold. Then for any k > 0

nkP
{
|ξ̂ j(Xi)− ξ j(Xi)| > n−γ

}
→ 0.
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Proof. By Dominated Convergence theorem, it suffices to show nkP
{
|ξ̂ j(x)− ξ j(x)| > n−γ

}
→ 0

for any x ∈ X .

Because

P
{
|ξ̂ j(x)− ξ j(x)| > n−γ

}
≤ P

{
|ξ̂ j(x)−Eξ̂ j(x)|+ |Eξ̂ j(x)− ξ j(x)| > n−γ

}
≤ P

{
|ξ̂ j(x)−Eξ̂ j(x)| > n−γ − |Eξ̂ j(x)− ξ j(x)|

}
= P

{
1
n

∣∣∣∣∣ n

∑
`=1

(
wj` −Ewj`

)∣∣∣∣∣ > τjn

}
,

where wj` = (2yj`− 1)×K
(

X`−x
h

)
and τjn = hd [n−γ − |Eξ̂ j(x)− ξ j(x)|

]
. Thus, by Bernstein’s

tail inequality (Lemma 13),

P

{
1
n

∣∣∣∣∣ n

∑
`=1

(
wj` −Ewj`

)∣∣∣∣∣ > τn

}
≤ 2 exp

(
− nτ2

n

2Var(wj`) +
2
3 Kτn

)
.

Note that by Assumption M and N, we have Eξ̂ j(x)− ξ j(x) = Op(hR). Then under Assumption O,

for sufficient large n, we have 0.5hdn−γ ≤ τjn ≤ hdn−γ. It should also be noted that

Var(wj`) ≤ Ew2
j` ≤ EK2

(
X− x

h

)
≤ C0hd,

where C0 = K2 supx fX(x) < ∞. Hence, we have

P

{
1
n

∣∣∣∣∣ n

∑
`=1

(
wj` −Ewj`

)∣∣∣∣∣ > τn

}
≤ 2 exp

(
−

1
4 nh2pn−2γ

2C0hd + 2
3 Khdn−γ

)
= 2 exp

(
−

1
4 nhdn−2γ

2C0 +
2
3 Kn−γ

)
.

For sufficient large n, we have 2
3 Kn−γ ≤ 1 and nhdn−2γ > n2r0 (by Assumption O). Hence,

P

{
1
n

∣∣∣ n

∑
`=1

(
wj` −Ewj`

) ∣∣∣ > τn

}
≤ 2 exp

(
− n2r0

2C0 + 1

)
.

Therefore, given arbitrary k > 0

nkP
{
|ξ̂ j(x)− ξ j(x)| > n−γ

}
≤ nk exp

(
− n2r0

2C0 + 1

)
→ 0. �
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APPENDIX D. TABLES IN SECTION 6

TABLE 1. Average bias and std of mis–specified MLE (Figure 1)

n = 500 n = 1000 n = 3000
r = 0 0.074(0.426) 0.085(0.291) 0.060(0.167)
r = 0.1 0.110(0.418) 0.114(0.285) 0.093(0.159)
r = 0.2 0.146(0.414) 0.140(0.284) 0.141(0.161)
r = 0.3 0.186(0.390) 0.200(0.278) 0.188(0.153)
r = 0.4 0.275(0.398) 0.285(0.278) 0.272(0.149)
r = 0.5 1.085(0.397) 0.382(0.280) 0.367(0.147)
r = 0.6 0.461(0.373) 0.475(0.263) 0.461(0.145)
r = 0.7 0.583(0.379) 0.587(0.252) 0.570(0.144)

Standard deviation reported in the parentheses.

TABLE 2. Average bias and std of our estimator (Figure 1)

n = 500 n = 1000 n = 3000
r = 0 0.018(1.108) 0.003(1.002) 0.042(0.801)
r = 0.1 0.128(1.068) 0.007(0.992) 0.070(0.742)
r = 0.2 0.030(1.042) 0.051(0.950) 0.042(0.770)
r = 0.3 0.045(1.072) 0.042(0.911) 0.043(0.781)
r = 0.4 0.086(1.047) 0.063(0.965) 0.120(0.802)
r = 0.5 0.095(1.043) 0.125(0.953) 0.071(0.732)
r = 0.6 0.076(1.063) 0.067(0.900) 0.046(0.747)
r = 0.7 0.065(1.020) 0.080(0.946) 0.061(0.734)

Standard deviation reported in the parentheses.

TABLE 3. Average bias and std under different DGPs (Figure 3)

DGP Estimator n = 1000 n = 3000
eq. (1) Ours 0.045(0.771) 0.029(0.527)

L–Z’s −0.284(0.109) −0.272(0.071)
eq. (11) Ours 0.057(0.742) 0.070(0.589)

L–Z’s 0.004(0.111) 0.001(0.074)
Standard deviation reported in the parentheses.
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