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ABSTRACT. This paper studies the identification and estimation in an I–player binary game

of incomplete information. Our approach allows players’ type to be correlated across players.

By focusing on the monotone pure strategy Bayesian Nash Equilibrium (BNE), we show

that the equilibrium strategies can be represented as a single–agent binary response model.

Under weak restrictions, we show that the distribution of incomplete information can be

nonparametrically identified. Further, we establish the identification of payoff functions

in a linear–index setup. Following Klein and Spady (1993), we propose a three–stage

estimation procedure and show that our estimator is
√

n–consistent, asymptotically normally

distributed.
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1. INTRODUCTION

In this paper, we study the identification and estimation of static binary games of incom-

plete information with correlated private information (i.e. types). The range of applications

of binary games includes, among others, models of entry (Bresnahan and Reiss, 1990, 1991;

Berry, 1992; Jia, 2008; Seim, 2006), couples’ retirement decisions (Banks, Blundell, and

Casanova Rivas, 2010; Casanova, 2010), labor force participation (Bjorn and Vuong, 1984;

Soetevent and Kooreman, 2007)), stock market analysts’ recommendations (Bajari, Hong,

Krainer, and Nekipelov, 2010), advertising (Sweeting, 2009), and social interactions (Brock

and Durlauf, 2001a,b; Xu, 2011), etc.

To simply our exposition, we formally consider throughout this paper the equilibrium

solution that can be represented by the following structural equations (i.e., best responses):

for i = 1, · · · , I,

Yi = 1
{

X′i βi + ∑
j 6=i

P(Yj = 1|X, Ui)−Ui ≥ 0
}

, (1)

where subscript i is an index of players in the game; Xi is a vector of exogenous payoff

relevant variables, while the error term Ui is i’s private information, which is not observed

by other players; We allow U = (U1, · · · , UI) to be correlated with each other under an

unknown form. This model is a natural extension of Manski (1975, 1985)’s binary threshold

crossing model in the single–agent setup to a structural model with strategic interactions.

This paper contributes to the existing discrete game literature in several respects. First,

we do not require the (conditional) independence of private payoff shocks across players,

which is widely adopted by most of the literature, e.g., Aguirregabiria and Mira (2007);

Bajari, Hong, Krainer, and Nekipelov (2010); De Paula and Tang (2010); Grieco (2011);

Pesendorfer and Schmidt-Dengler (2003) and Lewbel and Tang (2011) do; exceptions

include Aradillas-Lopez (2010); Wan and Xu (2010) and Xu (2010).1

1The novel approach developed in Aradillas-Lopez (2010) assumes that players do not have exact knowledge
about the distributions involved and then using an equilibrium concept defined in Aumann (1987).
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Allowing correlated private signals is motivated primarily by empirical concerns. The

(conditional) independence assumption of U is convenient but meanwhile imposes strong

restrictions — players’ choices must be conditionally independent, which could be invali-

dated by the data.2 Moreover, in the social interaction framework, the correlation among

players’ private payoff shock represents the “homophily” effects in social behaviors, which

is caused by the unobserved “similarity” in players’ preference. In contrast, the peer effects

is purely the strategic effects caused by interactions with other group members. Both effects

accounting for the “herding” behavior in a society group can be identified and distinguished

with each other in our model.

Second, we make no parametric assumptions on the joint distribution of private payoff

shocks, which distinguish our paper from Xu (2010). We establish nonparametric identifi-

cation results for the copula function of private payoff shocks, from which we can derive

equilibrium belief function. In a similar semiparametric setup, Wan and Xu (2010) establish

partial identification of payoff coefficients when types are positively regression dependent,

and further achieve point identification under an additional support condition on regressors.

The maximum score type estimator they suggested converges at 3
√

n–rate. In this paper, we

establish point identification of structural parameters under weak conditions. Moreover, the

Klein–Spady type estimator we propose in this paper is
√

n–consistent.

The key in our semiparametric identification approach is to focus on the class of monotone

pure strategy BNEs. Athey (2001) provided the seminar result that a monotone pure–strategy

BNE exists whenever a Bayesian game obeys a Spence–Mirlees single–crossing restriction.

McAdams (2003) and Reny (2011) extends Athey (2001)’s results. Applying Reny (2011)

in our setup, we show that a monotone strategy BNE generally exists under weak conditions.

Third, we propose a Klein–Spady type pseudo maximum likelihood estimator for the

structural parameter, which is shown to be
√

n–consistent. In the proposed estimation

procedure, we estimate the belief component nonparmaetrically. Then, following Klein

2A model featured with unobserved heterogeneity and independent private signals also generates dependence
among players’ choices conditional on observed regressors (see Grieco, 2011).
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and Spady (1993), we construct a pseudo loglikelihood function using the estimated beliefs

as part of covariates. Monte–Carlo evidence indicates that there is only modest efficiency

losses relative to the semiparametric estimation when the belief component is known to

researchers.

The rest of the paper is arranged as follows. We introduce the setup of our game model in

Section 2 and establish the existence for monotone pure strategy BNE in Section 3. Further,

We discuss the semiparametric identification of the structural model in Section 4. In Section

5, we propose a Klein–Spady type estimator in a two–player setup. Section 6 provides

Monte–Carlo simulations.

2. MODEL

We consider a static binary game of incomplete information, commonly referred to as

a Discrete Bayesian game. There are a finite number of players, indexed by i ∈ I ≡
{1, 2, · · · , I}, and each player i simultaneously chooses an action Yi ∈ {0, 1}.3 Define

A = {0, 1}I as the action space of the game and let y = (y1, · · · , yI) ∈ A be a generic

element of A. Following the convention, let A−i and y−i denote the action space and a

profile of actions for all players but excluding player i, respectively.

For each player i, Xi ∈ Rdi is a vector of payoff relevant random variables, which are

publicly observed by all players. Define X = (X1, · · · , XI) ∈ Rp, where p = ∑I
i=1 di, as

all the publicly observed information in the game. Player i’s payoff shock Ui is i’s private

information, which is not observed by other players. Let U = (U1, · · · , UI) and FXU be

the c.d.f. of (X, U). The joint distribution FXU is assumed to be common knowledge to all

players.

The payoff for player i is described as follows,

πi(y, xi, ui) =

 x′i βi + ∑j 6=i αijyj − ui, if yi = 1,

0, if yi = 0,

3For notational simplicity, we restrict players to make binary decisions and all of our results could be
generalized to the case where the choice set for each player is finite, which is briefly discussed in the section 7.

4



where βi ∈ Rdi and αij ∈ R (i 6= j) are the parameters of interest. αij (j 6= i) are strategic

interaction parameters, which measures the ceteris paribus effects on i’s payoff from j’s

choice. Our payoff function here is similar to the parametric case in Bajari, Hong, Krainer,

and Nekipelov (2010).4 The zero payoff for action yi = 0 is a standard way of normalization.

Regarding to the payoff shock U, departing from the static discrete game literature (e.g.,

Bajari, Hong, Krainer, and Nekipelov, 2010), our analysis involves neither (conditional)

independence restrictions between Ui and Uj nor parametric assumptions; only exceptions

include Aradillas-Lopez (2010), Liu, Vuong, and Xu (2012), and Wan and Xu (2010).

Following the literature on Bayesian games, player i’s decision rule is a function Yi =

si(X, Ui), where si : SX ×R → {0, 1} ∈ ∆i maps all the information that i knows to

a binary response and ∆i is the strategy space of i. Note that X−i also enters player i’s

decision rule si, since the opponents’ decisions have effects on i’s response through the

strategic interactions.

Fix x ∈ SX. For any strategy profile s = (s1, · · · , sI) ∈×i ∆i and j 6= i, we let

σs
ij(x, ui) be the conditional probability P

{
sj(X, Uj) = 1|X = x, Ui = ui

}
, i.e.,

σs
ij(x, ui) =

∫
R

1
{

sj(x, ν) = 1
}

fUj|X,Ui
(ν|x, ui)dν

where 1 [·] is the indicator function and fUj|X,Ui
is the conditional probability density

function of Uj given X and Ui. Hence, the term σs
ij(x, ui) is player i’s belief on the event

Yj = 1, given i’s information (x, ui) and the specified decision rule s.

The equilibrium concept we adopt is the pure strategy Bayesian Nash equilibrium (BNE).

Similar to Bajari, Hong, Krainer, and Nekipelov (2010), the mixed strategy equilibrium is

not considered hereafter, since with probability one, each player has a unique best response.

Let s∗ = (s∗1 , · · · , s∗I ) is the equilibrium strategy profile and σ∗ij(·, ·) is a short notation

for σs∗
ij (·, ·). In equilibrium, player i’s equilibrium strategy satisfies a “mutual consistency”

4 Aradillas-Lopez (2010), Lewbel and Tang (2011), and Wan and Xu (2010), among others, have also studied
binary games with the same payoff structure but under a two–player framework.
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requirement, i.e.

s∗i (x, ui) = 1

[
x′i βi + ∑

j 6=i
αijσ

∗
ij(x, ui)− ui ≥ 0

]
. (2)

Equation (2) are indeed a simultaneous equation system, since player i’s equilibrium beliefs

σ∗ij on the right hand depend on s∗j (x, ·), and vice versa. Therefore, s∗ is defined as a

fixed point to eq. (2). Although ensuring equilibrium existence in Bayesian games is a

complex and deep subject in the literature, it is well known that a solution of such an

equilibrium generally exists in a broad class of Bayesian games including the binary game

under discussion (see, e.g., Vives, 1990).

3. MONOTONE PURE STRATEGY BNE

Monotone pure strategy BNEs, in which equilibrium strategies are monotone functions in

private signals, are desirable in many applications in auction, entry, social interactions and

global games for example. The seminar work on the existence of a monotone pure strategy

BNE in games of incomplete information was provided Athey (2001) in both supermodular

and logsupermodular games, and later extended by McAdams (2003) and Reny (2011).

To apply Theorem 4.1 in Reny (2011), we make the following assumption.

Assumption A. Let the conditional distribution of U given X be absolutely continuous

w.r.t. the Lebesgue measure and have positive and continuous conditional Radon–Nikodym

densities fU|X a.e. over RI .

Assumption A requires the conditional c.d.f. function FU|X to be twicely differentiable

and have a full support on the Euclidean space.

Assumption B (Monotone Best Response Functions). For all x ∈ SX, i ∈ I , and ν ∈ RI ,

we have 1−∑j 6=i

{
αij × ∂FUj|X,Ui

(νj|x, νi)/∂ui

}
≥ 0.

Note that Assumption B is trivially satisfied if U are mutually independent. Assumption B

also holds if αij ≤ 0 and Ui and Uj are positively regression dependent for all i 6= j.
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Lemma 1. Suppose that Assumptions A and B hold, then there exists at least one monotone

pure strategy BNE in our binary discrete games.

Proof. See Lemma 1 in Liu, Vuong, and Xu (2012). �

It should be noted that we are silent about the existence of non–monotone strategy BNEs

under Assumption B in Lemma 1. Xu (2010) shows that non–monotone strategy BNEs can

be ruled out under further restrictions on the correlation between private signals. Lemma

1 does not ensure either the uniqueness of monotone pure strategy BNE. Throughout our

analysis, we assume that under Assumption B, only one monotone pure strategy BNE is

played.

With a monotone pure strategy BNE, player i’s equilibrium strategy is a weakly monotone

functions of her private signal and can be characterized by a threshold function, i.e., fix

x ∈ SX,

s∗i (x, ui) = 1{ui ≤ u∗i (x)},

where u∗i : SX → R. Further, the mutual consistency condition for BNEs requires that for

all i

ui ≤ u∗i (x)⇐⇒ x′i βi + ∑
j 6=i

αij × FUj|X,Ui

(
u∗j (x)|x, ui

)
− ui ≥ 0.

In a monotone pure strategy BNE, we can represent the equilibrium strategies as a semi–

linear–index binary response model. For all x ∈ SX, let ϕij(x) = FUj|X,Ui

(
u∗j (x)|x, u∗i (x)

)
and Pij = ϕij(X). Let further Pi = [Pij]j 6=i and αi = [αij]j 6=i be the I − 1–dimensional

random and deterministic vector, respectively.

Lemma 2. Suppose that Assumptions A and B hold and that monotone pure strategy BNEs,

s∗ = (s∗1 , · · · , s∗I ), are played. Then the structural model can be represented as follows,

Yi = 1
[
Ui ≤ X′i βi + P′i αi

]
, (3)

Proof. See Lemma 2 in Liu, Vuong, and Xu (2012). �
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4. IDENTIFICATION

In this section, we discuss the semiparametric identification of the structural parameters —

αi, βi and FU|X. The definition of identification of parameters in a structural model follows

Hurwicz (1950) and Koopmans and Reiersol (1950), i.e. given the conditional distribution

PY|X that is generated from a structure with parameter θ0, the structural parameter θ0 is

identified if there exists a function G such that θ0 = G (PY|X).

Our identification strategy takes two steps: first, we establish nonparametric identification

of the function ϕij and the (conditional) copula function of the distribution of U; second,

we identify (αi, βi) and FUi under an additional location–scale normalization of the payoff

function. To proceed, we first make the following assumptions.

Assumption C. Let Xi = (Wi, Zi) ∈ R
dWi ×R

dZi where dWi + dZi = di. Conditional on

W = (W1, · · · , WI), U and Z = (Z1, · · · , ZI) are independent of each other.

Assumption C assumes the conditional independence between U and Z given W, which-

has been frequently made in the empirical discrete game literature. See, e.g. Aradillas-Lopez

(2010), Bajari, Hong, Krainer, and Nekipelov (2010), and Lewbel and Tang (2011).

Fix W = w. For any i 6= j and (vi, vj) ∈ [0, 1]2, define a copula function Cij(·|w) :

[0, 1]2 → [0, 1] as follows:

Cij(vi, vj; w) = P
(

Ui ≤ F−1
Ui

(vi), Uj ≤ F−1
Uj

(vj)
∣∣W = w

)
.

By definition, Cij(v; w) = Cji(v′; w), where v′ is the transpose of the vector v ∈ [0, 1]2.

Let further Vi = E(Yi|X). Note that Cij(·; w) can be identified on the support for all

(vi, vj) ∈ SViVj|W=w, by

Cij(vi, vj; w) = E(YiYj|Vi = vi, Vj = vj, W = w).

Assumption D. For some w ∈ SW , the support SViVj|W=w is convex and compact subset

of [0, 1]2, and has full rank, i.e., dim
(
SViVj|W=w

)
= 2.
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The second half of Assumption D is a restriction similar to the exclusion restriction

which requires a rich support for Z conditional on X (see, e.g. Bajari, Hong, Krainer, and

Nekipelov, 2010). The first part is restrictive, but can relaxed significantly. For the brevity

of notation, we will not pursue this direction. Please note, however, that the support of

(Vi, Vj) given W needs not to be [0, 1]2 and, as a consequence, the conditional distribution

of FUi|W(·|w) is only disclosed on a subset of [0, 1]. It should also be noted that the support

restriction on (Vi, Vj) given W is only required for some w in the support, instead of the

whole support of W.

Assumptions C and D allow us to identify ϕij on the support SX|W=w.

Lemma 3. Suppose that Assumptions A and B hold and that monotone pure strategy BNEs,

s∗ = (s∗1 , · · · , s∗I ), are played. In addition, suppose that Assumptions C and D hold. Then

for any i 6= j, ϕij(·) is identified on the support SX|W=w.

Proof. See Appendix A.1 �

The identification of (αi, βi) is similar to the single agent binary response model. By

Lemma 2,

F−1
Ui|W

(Vi|W) = X′i βi + P′i αi (4)

Let Ti = [X′i − E(X′i |Vi, W), P′i − E(P′i |Vi, W)]′. Thus we can define a hyperplane in

terms of Ti and payoff coefficients (αi, βi):

T′i ×

 βi

αi

 = 0,

from which we identify (αi, βi) under a scale normalization and a rank condition. Moreover,

given the identification of (αi, βi) and ϕi SX|W=w, we can identify FUi|W(·|w) using the

fact that FUi|W(X′i βi + P′i αi|W) = E(Yi|X).

Assumption E. ‖βi‖ = 1.
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Assumption E normalizes the scale of βi only, instead of (αi, βi), because in Section 5

we will estimate βi up to scale in the first stage, therefore this normalization will simplify

our estimation analysis.

Assumption F. For some w ∈ SW satisfying Assumption D, the matrix E(TiT′i |W = w)

has full rank which equals to di + I − 1.

In addition to Assumption D, Assumption F is another rank condition, which implicitly

excludes the constant term in Xi and serves as a location normalization. Assumption F is

not a primitive restriction because Pi obtains from the equilibrium. Please note, however,

it’s not difficult to view that a full rank condition on X′i −E(X′i |Vi, W) and a rich support

of X′−iβ−i given Xi will imply Assumption F.

Theorem 1. Suppose that Assumptions A and B hold and that monotone pure strategy BNEs,

s∗ = (s∗1 , · · · , s∗I ), are played. In addition, suppose that Assumptions C to F hold. Then

(αi, βi) is identified. Moreover, FUi|W(·|w) is also identified on SX′i βi+Z′i αi|W=w.

The proof of Theorem 1 is straightforward under above discussion and, therefore, omitted.

5. SEMIPARAMETRIC ESTIMATION OF INDEX PAYOFFS

In this section, we discuss the estimation of (αi, βi) coefficients in the payoff function

and leave FU|X as a nuisance parameter. For the brevity of notation, we illustrate our method

in a two–player setup, i.e. I = 2. Our estimation procedure takes three steps: First, we

estimate βi up to scale at a
√

N rate. Next, we estimate the belief function ϕi at a uniform

non–parametric rate using kernel method. Finally, we propose a simple estimator for αi and

show that α̂i converges at a
√

N rate. We also establish asymptotic distributions for β̂i and

α̂i.

Without causing any confusion, we denote by subscript n (or `, alternatively) the index of

observation in a sample and by N the sample size. In contrast, we use subscript i (or j, k,

alternatively) to denote the index of player. Let Xn = (X1n, X2n) and Yn = (Y1n, Y2n).
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Assumption G. Let {(Xn, Yn) : n = 1, · · · , N} be an i.i.d. random sample.

5.1. Estimation of βi. In a two–player game, the payoff function for player i becomes

πi(y, xi, ui) =

 x′i βi + αiy−i − ui, if yi = 1,

0, if yi = 0,

where the strategic effects coefficient is a scale. Suppose that the conditions in Lemmas

1 hold and that the equilibrium adopted is a monotone pure strategy BNE, (s∗1 , s∗2), where

s∗i (x, ui) = 1
{

ui ≤ u∗i (x)
}

. Then the mutual consistency restriction requires that

x′1β1 + α1P (U2 ≤ u∗2 |X = x, U1 = u∗1)− u∗1 = 0, (5)

x′2β2 + α2P (U1 ≤ u∗1 |X = x, U2 = u∗2)− u∗2 = 0. (6)

Note that there could be multiple solution to eqs. (5) and (6) and we assume that only one

solution contributes the equilibrium played. We also maintain the following assumption

throughout this section, which strengthens Assumption C.

Assumption H. Let X and U be independent of each other.

Under Assumption H, FU|X = FU and u∗i (x) = u∗i (x′1β1, x′2β2). Therefore, E(Yi|X) =

Gi (X′1β1, X′2β2), where Gi(t1, t2) = FUi

(
u∗i (t1, t2)

)
. Following the literature on the index

models, βi can be estimated up to scale at a
√

N rate, which is well discussed (see, e.g.

Bierens, 2011; Ichimura, 1993; Klein and Spady, 1993; Powell, Stock, and Stoker, 1989).

For example, here we simply describe a procedure to estimate β by following Klein and

Spady (1993).

Let β = (β′1, β′2)
′ and B be the parameter space for β such that Assumption E is satisfied

for all its elements. For y ∈ A, x ∈ SX and b ∈ B, let . Let further P(y|x; b) = E(Y =

y|X′1b1 = x′1b1, X′2b2 = x′2b2) and P̃(y|xn; b) be a Kernel estimator for the conditional
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probabilities P(y|xn; b) given the n–th observation Xn = xn, i.e.

P̃(y|xn; b) =
∑` 6=n 1(Y` = y)Kp

(
X′1`b1−x′1nb1

hp
, X′2`b2−x′2nb2

hp

)
+ δ̃1n(b)

∑` 6=n Kp

(
X′1`b1−x′1nb1

hp
, X′2`b2−x′2nb2

hp

)
+ δ̃n(b)

,

where Kp(·) : R2 → R denotes a Parzen–Rosenblatt kernel function and hp is a bandwidth,

and δ̃1n and δ̃n are trimming sequences introduced for technical reasons, see Klein and

Spady (1993) for more detail.

Therefore, we define a Klein–Spady type estimator as follows:

β̃ = argmaxb∈B

N

∑
n=1

(τ̃n/2)

{
∑

y∈A

[
1 {Yn = y} ln P̃2(y|Xn; b)

]}
,

in which τ̃n is a trimming sequence. Given the rich literature on the asymptotic properties

of such kind of index estimators, in the following analysis, we simply assume a pilot
√

N–consistent estimator β̃ = β + Op(N−1/2).

5.2. Estimation of Belief Function ϕi. Now we establish a nonparametric estimator for

the equilibrium belief function ϕi(·). Rather than following the identification strategy in

Section 4, here we derive a similar expression for (ϕ1, ϕ2). For t ∈ R2 and i = 1, 2, let

mi(t) = E(Yi|X′1β1 = t1, X′2β2 = t2). Let further M(t) = E(Y1Y2|X′1β1 = t1, X′2β2 =

t2). Then

ϕ1(x) =
∂M(x′1β1,x′2β2)

∂t1
× ∂m2(x′1β1,x′2β2)

∂t2
− ∂m2(x′1β1,x′2β2)

∂t1
× ∂M(x′1β1,x′2β2)

∂t2
∂m1(x′1β1,x′2β2)

∂t1
× ∂m2(x′1β1,x′2β2)

∂t2
− ∂m2(x′1β1,x′2β2)

∂t1
× ∂m1(x′1β1,x′2β2)

∂t2

, (7)

ϕ2(X) =

∂m1(x′1β1,x′2β2)
∂t1

× ∂M(x′1β1,x′2β2)
∂t2

− ∂M(x′1β1,x′2β2)
∂t1

× ∂m1(x′1β1,x′2β2)
∂t2

∂m1(x′1β1,x′2β2)
∂t1

× ∂m2(x′1β1,x′2β2)
∂t2

− ∂m2(x′1β1,x′2β2)
∂t1

× ∂m1(x′1β1,x′2β2)
∂t2

, (8)
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which comes from the fact that

∂M(x′1β1, x′2β2)

∂t1
= ϕ1(X)× ∂m1(x′1β1, x′2β2)

∂t1
+ ϕ2(X)× ∂m2(x′1β1, x′2β2)

∂t1
,

∂M(x′1β1, x′2β2)

∂t2
= ϕ1(X)× ∂m1(x′1β1, x′2β2)

∂t2
+ ϕ2(X)× ∂m2(x′1β1, x′2β2)

∂t2
.

Therefore, we estimate ϕi(Xn) for each observation Xn by plugging into the leave–one–out

Nadaraya–Watson estimator for each term in equations (7) and (8).

Let

f̂X(xn) = ∑
` 6=n

Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
Nh2

ϕ,

q̂i(xn) = ∑
` 6=n

Yi`Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
Nh2

ϕ,

Q̂(xn) = ∑
` 6=n

Y1`Y2`Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
Nh2

ϕ,

where Kϕ(·) : R2 → R denotes a Parzen–Rosenblatt kernel function and hϕ is a bandwidth.

Thus, M(X′1nβ1, X′2nβ2) and mi(X′1nβ1, X′2nβ2) can be estimated by Q̂(Xn)
/

f̂X(Xn) and

q̂i(Xn)
/

f̂X(Xn), respectively. For notational brevity, we denote M̂(Xn) = Q̂(Xn)
/

f̂X(Xn)

and m̂i(Xn) = q̂i(Xn)
/

f̂X(Xn).

Moreover, let

âi(xn) =
1

Nh3
P

N

∑
` 6=n

∂Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
∂ti,

b̂ji(xn) =
1

Nh3
P

N

∑
` 6=n

Yj` × ∂Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
∂ti,

ĉi(xn) =
1

Nh3
P

N

∑
` 6=n

Y1`Y2` × ∂Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
∂ti.

Thus we estimate ∂M(X′1nβ1, X′2nβ2)/∂t1 by f̂−2
X (Xn)

[
ĉi(Xn) f̂X(Xn)− âi(Xn)× M̂(Xn)

]
,

and ∂mj(X′1nβ1, X′2nβ2)/∂ti by f̂−2
X (Xn)

[
b̂ji(Xn) f̂X(Xn)− âi(Xn)× m̂j(Xn)

]
. Hence,
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we obtain an estimator for ϕi(xn),

ϕ̂i(xn) =
Âi(xn)

Â(xn)
, (9)

in which for j 6= i

Âi(xn) ≡
[
ĉi(xn) f̂X(xn)− âi(xn)Q̂(xn)

]
×
[
b̂jj(xn) f̂X(xn)− âj(xn)q̂j(xn)

]
−
[
ĉj(xn) f̂X(xn)− âj(xn)Q̂(xn)

]
×
[
b̂ji(xn) f̂X(xn)− âi(xn)q̂j(xn)

]
,

Â(xn) ≡
[
b̂11(xn) f̂X(xn)− â1(xn)q̂1(xn)

]
×
[
b̂22(xn) f̂X(xn)− â2(xn)q̂2(xn)

]
−
[
b̂12(xn) f̂X(xn)− â2(xn)q̂1(xn)

]
×
[
b̂21(xn) f̂X(xn)− â1(xn)q̂2(xn)

]
.

To guarantee a uniform convergence, we further impose a convenient assumption that

restricts the denominator in eq. (9) to be bounded away from zero almost surely.

Assumption I. There exists a constant c0 > 0 such that

inf
x∈SX

∣∣∣∣∂m1(x′1β1, x′2β2)

∂t1
× ∂m2(x′1β1, x′2β2)

∂t2
− ∂m1(x′1β1, x′2β2)

∂t2
× ∂m2(x′1β1, x′2β2)

∂t1

∣∣∣∣ > c0,

almost surely.

Assumption I could be replaced by introducing trimming adjustments to the denominator

of the estimator (see, e.g., Klein and Spady (1993)).

We make further assumptions, which are standard for the uniform convergence of kernel

estimator.

Assumption J. Let R ≥ 1. For some δ > 0 and all βδ ∈ {b ∈ B : ‖b − β‖ ≤ δ},
fX′1βδ

1,X′2βδ
2
(·) is (R+1)–times continuously differentiable on R2 with bounded (R+1)th–

partial derivatives on R2. Further, E(Yi|(X′1βδ
1, X′2βδ

2) = ·) and E
(
Y1Y2|(X′1βδ

1, X′2βδ
2) = ·

)
are (R+1)–times continuously differentiable on R2 with bounded (R+1)th–partial derivatives

on R2.
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In particular, fX′1βδ
1,X′2βδ

2
(·) is uniformly continuous on R2 and integrable. Thus fX′1βδ

1,X′2βδ
2
(·)

is bounded, i.e., supt∈R2 fX′1βδ
1,X′2βδ

2
(t) < ∞. Moreover, a similar argument also applies to

functions E(Yi|(X′1βδ
1, X′2βδ

2) = ·) and E(Y1Y2|(X′1βδ
1, X′2βδ

2) = ·).

Assumption K. Let κN ∝ Nι for some ι > 0 and infx∈SX fX(x) > 0.

Note that we can let ηN go to zero at an arbitrary slow rate by choosing small ι. We

will derive the uniform convergence of ϕ̂i(x) with respect to the compact sub–support

{x : ‖x‖ ≤ κN}. Let ηN ≡ inf‖x‖≤κN
f 4
X(x). If the second half condition in Assumption K

does not hold, then the observations in the compact sub–support with f 4
X(x) ≤ ηN need to

be trimmed.

Assumption L. Let E|X| < ∞.

Assumptions K and L could be replaced by the simpler conditions that the support of X

is compact and fX is bounded away from zero.

Assumption M. Kϕ(u) : R2 → R is (R+1)–continuously differentiable on R2 with

bounded (R+1)th–partial derivatives on R2. The support of KP(·) is a convex subset of R2

with nonempty interior, with the origin as an interior point. Kϕ(u) satisfies∫
ur1

1 ur2
2 Kϕ(u)dx = 0 if r1 + r2 = R,

< ∞ if r1 + r2 = R + 1.

Assumption N. Setting hϕ = (ln N/N)1/(2R+4).

Proposition 1. Suppose that β̃ = β + Op(N−1/2). If Assumption G through N hold, then

sup
‖xn‖≤κN

‖ϕ̂i(xn)− ϕi(xn)‖ = Op

(
η−1

N

(
ln N

N

)R/(2R+4)
)

.

Proof. See Appendix B.1 �

Note that our choice of hϕ implies over smoothing for the nonparametric estimation of

functions mi and M and would be sub–optimal in this sense. However, this sub–optimality
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will not affect the fact that ϕ̂i converges uniformly at the best possible rate, which mainly

relies on the optimal convergence rate for the derivate estimator of functions mi and M.

5.3. Estimation of Strategic Component αi. Our final step is to estimate αi (together

with βi) at a
√

N–convergence rate. Since in equilibrium, Yi = 1
{

Ui ≤ X′i βi + αi ϕi(X)
}

is a single index model on (Xi, ϕi(X)), here we simply follow the approach proposed

by Klein and Spady (1993),5 which achieves the semi–parametric efficiency bound. To

simplify our discussion and the notation, we use the marginal distribution of Yi to derive

the quasi–likelihood function indexed by (ai, bi) ∈ Ai × Bi, instead of employing the joint

distribution of (Y1, Y2). Thus, our estimator is defined by

(α̂i, β̂i) = argsup
(ai,bi)∈Ai×Bi

L̂i(ai, bi; τ̂), (10)

where

L̂i(ai, bi; τ̂) ≡
N

∑
n=1

(τ̂n/2)
{

Yin ln
[
P̂i(Xn; ai, bi)

]2
+ (1−Yin) ln

[
1− P̂i(Xn; ai, bi)

]2} ,

and

P̂i(Xn; ai, bi) =
∑` 6=n

[
Yi` × KP

(
(Xi`−Xin)

′bi+ai[ϕ̂i(X`)−ϕ̂i(Xn)]
hP

)]
+ δ̂1n(ai, bi)

∑` 6=n KP

(
(Xi`−Xin)′bi+ai[ϕ̂i(X`)−ϕ̂i(Xn)]

hP

)
+ δ̂n(ai, bi)

,

and τ̂n, δ̂1n and δ̂n are trimming sequences (see Klein and Spady (1993)).

Note that the only difference with the estimator defined Klein and Spady (1993) is the fact

that we replace the unobserved belief ϕi(X) with the belief estimator ϕ̂i(X). By proposition

1 and under a similar argument as in Klein and Spady (1993), we also show that (α̂′i, β̂′i) is a
√

N–consistent estimator of (α′i, β′i).

Assumption O. The parameter vector (α′i, β′i) lies in the interior of a compact space

Ai × Bi ⊆ R×Rdi .

5 Because Pi is bounded between [0, 1] and has positive density close to the boundary, which violate the
conditions in Powell, Stock, and Stoker (1989).
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Assumption P. Let X be distributed in a compact support, and ηN be a strict positive

constant by setting κN ≡ supx∈SX
‖x‖. Let fXi1|o(xi1) be the density for some continuous

variable, denoted as Xi1, conditioned on the remaining exogenous variables (including X−i),

and U. This conditional density is smooth in that for all x ∈ SX, there exists a constant

c1 ∈ R+ such that ∣∣∣Dr
xi1

fXi1|o(xi1)
∣∣∣ < c1, (r = 1, 2, 3, 4).

Assumption Q. With hP → 0, the trimming function employed to down weight observations

has the form

τ(t, ε) ≡
{

1 + exp
[
(hε/5

P − t)/hε/4
P

]}−1
,

where ε > 0 and t is to be interpreted as a density estimator (e.g. f̂X′i bi+ai ϕi(X).) Let

δ̂dn ≡ τ(ĝidn(ãiP, b̃iP), ε), for d = 0, 1,

and δ̂n ≡ δ̂0n + δ̂1n,

where for d = 0, 1,

ĝidn(ãiP, b̃iP) ≡
N

∑
` 6=n

1(Yi` = d)
hP

KP

(
(Xin − Xi`)

′b̃iP + ãiP [ϕ̂i(Xn)− ϕ̂i(X`)]

hP

)/
(N − 1),

and (ãiP, b̃iP) is a preliminary consistent estimator for which ‖(ãiP, b̃iP) − (ai, bi)‖ is

Op(N−1/3).

Assumption R. The kernel function, KP(·) : R → R, is a symmetric function that inte-

grates to one, has bounded third moment, and for some c2 > 0,

max
{
|Dr

uKP(u)| ,
∫
|Dr

uKP(u)| du
}
< c2, (r = 0, 1, 2, 3, 4),∫

u2KP(u)du = 0.

Moreover, let hP be a bandwidth sequence satisfying (i) N−R/(2R+4) × h−2
P → 0; (ii)

N−1/4 < hP < N−1/8.
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Note that we apply a stronger result of uniform convergence in Hansen (2008), which

modifies the lower bound of hP from N−1/6 in Klein and Spady (1993) to N−1/4 in our

Assumption R, (ii). Assumption R implies that R > 2, a restriction to the order of kernel in

our first–step estimation.

Assumption S. For i = 1, 2, there exists no proper linear subspace of Rd having probability

1 under PX.

Theorem 2. Suppose that supx ‖ϕ̂i(x)− ϕi(x)‖ = Op

(
(ln N/N)−R/(2R+4)

)
for some

R ≥ 1. If Assumption G through S hold. Then

√
N

 α̂i − αi

β̂i − βi

 d−→ N(0, Σ),

where

Σ ≡ E

{
f 2
Ui

(
u∗i (X)

)
× (ϕi(X), X′i)

′(ϕi(X), X′i)

FUi

(
u∗i (X))

) [
1− FUi

(
u∗i (X)

)] }−1

.

Proof. See Appendix C �

5.4. A sketch of semiparametric estimation in I–player games. Now we consider a

discrete game with I players. In the setup specified in section 1, we make the following

parametric assumption on the payoff functions:

πi = X′i βi + ∑
j 6=i

αijYj.

Now the structural parameters of interest are (α′i, β′i)
′. In this setup, the equilibrium strategy

can be written as

Yi = 1

{
Ui ≤ X′i βi + ∑

j 6=i
αijP

(
Uj ≤ u∗j (X)|Ui = u∗i (X)

)}
.

In our first–step estimation, similarly, we estimate β by β̃ in an I–index model. Second,

let ϕi,j(x) = P
(
Uj ≤ u∗j (x)|Ui = u∗i (x)

)
, and similar to equation (7) and (8), we derive
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an expression for ϕij,

ϕij(X) =

∂E(YiYj|X′1β1,··· ,X′I β I)
∂ti

× ∂E(Yj|X′1β1,··· ,X′I β I)
∂tj

− ∂E(Yj|X′1β1,··· ,X′I β I)
∂ti

× ∂E(YiYj|X′1β1,··· ,X′I β I)
∂tj

∂E(Yi |X′1β1··· ,X′I β I)
∂ti

× ∂E(Yj|X′1β1,··· ,X′I β I)
∂tj

− ∂E(Yj|X′1β1,··· ,X′I β I)
∂ti

× ∂E(Yi |X′1β1,··· ,X′I β I)
∂tj

.

(11)

Hence, we obtain a nonparametric estimator ϕ̂ij by plugging into the leave–one–out

Nadaraya–Watson estimator for each term on the RHS of equation (11). By a similar

argument as that for Proposition 1, it can be shown that under similar set of conditions, there

is

sup
x

∥∥ϕ̂ij(x)− ϕij(x)
∥∥ = Op

(
η−1

N

(
ln N

N

)R/(2R+I+2)
)

.

Finally, by an analogous analysis, we follow Klein and Spady (1993) to obtain a
√

N–

consistent estimator for (α′i, β′i) under a similar set of conditions, for which we require

R > 1 + I/2.

6. MONTE CARLO SIMULATIONS

In this section, we use a numerical experiment to illustrate the performance of our

estimator in a finite–size sample. Let I = 2, d1 = d2 = 2 and X1 =
(
X11, X12

)
and

X2 =
(
X21, X22

)
, where X ≡

(
X1, X2

)
has a mean zero normal distribution with identity

covariance matrix. Let U1 and U2 be independent of X and conform to a joint mean zero

normal distribution with unit variances and correlation parameter ρ = 0.5.

Moreover, let β1 = β2 = (1, 1)′ , α1 = α2 = 1. It can be shown that a (unique)

monotone strategy BNE exists under this design, i.e., for each x, there exist cutoff values

u∗1(x) and u∗2(x), such that player j chooses 1 whenever her private signal uj ≤ u∗j (x). We

compute u∗j (x) by solving the following equations for each Xn in the sample:

u∗1 = β11x11 + β12x12 + α1Φ

(
u∗2 − ρu∗1√

1− ρ2

)
, u∗2 = β21x21 + β22x22 + α2Φ

(
u∗1 − ρu∗2√

1− ρ2

)
.

where Φ(·) is the c.d.f of standard normal distribution.

Table 1 shows the composition of one random sample with N = 500. In our first–step
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TABLE 1. Sample composition

Choice profile Percentage
Y = (1, 1) 46.0%
Y = (1, 0) 15.8%
Y = (0, 1) 17.8%
Y = (0, 0) 20.4%

estimation, βi obtains by the recipe of Klein and Spady (1993). Specifically, we use second

order biweight kernel and choose bandwidth according to rule of thumb. Table 2 reports

summary statistics for β̃1, including the sample mean(MEAN) and median (MEDIAN), as

well as the standard deviation (SD), and root–mean–squared–error (RMSE).

TABLE 2. Finite–Sample Behavior of β̃1

N TRUE MEAN MEDIAN SD RMSE
250 1.00 1.0109 0.9969 0.1739 0.1742
500 1.00 1.0063 0.9984 0.1160 0.1161
1000 1.00 1.0038 0.9987 0.0829 0.0830
2000 1.00 1.0037 1.0018 0.0547 0.0548

For the estimation of ϕi, we employ the fourth order biweight product kernel, i.e.,

K(u1, u2) = k(u1) · k(u2) where k(ui) = 7
4(1− 3u2

i ) ·
15
16(1− u2

i )
2 · 1(|ui| ≤ 1) and

choose hP = 4.40 · σ̂ ·
(

N/log(N)
)−1/10 where σ̂ is the estimated standard error of the

regressor.

Figure 1 plots ϕ1, ϕ2 and their kernel estimates. For presentation purpose, we fix

x1 = (0, 0), but a similar pattern holds for other values of x1. The upper panel shows

functions ϕ1 and ϕ2 and their estimates. The lower–left panel shows the estimate of ϕ1

and the infeasible estimate of ϕ1 when (β1, β2) are known. Further, the lower–right panel

shows the the marginal distribution of ϕ1(X), fϕ1(X), and its estimate.

In last step, we use second order biweight kernel and rule of thumb bandwidth again to

implement the Klein and Spady (1993) estimation procedure.

Table 3 reports the finite sample performance for estimating α1 by our three-step estima-

tion procedure. The case of estimating α2 has similar result. There are five numbers reported
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FIGURE 1. Kernel estimates of ϕ1, ϕ2 and fϕ1(X)

for each type of estimator with a certain sample size. The first number refers to the true

value of the parameter, the second number refers to the mean, the third one refers to the

median, the fourth one refers to Standard Deviation (SD) and the last one refers to the Root

Mean Square Error (RMSE).

Table 4 reports the finite sample performance for estimating β1 in the last step of our

estimation procedure. The case of estimating β2 yields similar result. Similar to table 3,

there are five numbers reported in the table.

21



TABLE 3. Mean, median, SD and RMSE for estimating α1

Sample size Our Estimator Infeasible Estimator
TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

250 1.00 0.946 0.926 0.4314 0.4346 1.00 0.988 0.984 0.3347 0.3348
500 1.00 0.988 0.988 0.3022 0.3022 1.00 1.0103 1.0168 0.2366 0.2367
1000 1.00 0.984 0.979 0.2072 0.2078 1.00 1.0032 1.0050 0.1628 0.1628
2000 1.00 0.993 0.994 0.1425 0.1426 1.00 0.999 0.995 0.1067 0.1067

TABLE 4. Mean, median, SD and RMSE for estimating β1 in last step

Sample size Our Estimator Infeasible Estimator
TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

250 1.00 1.0197 0.9996 0.1853 0.1861 1.00 1.0163 0.9963 0.1646 0.1652
500 1.00 1.0045 1.0048 0.1161 0.1161 1.00 1.0049 0.9968 0.1114 0.1114
1000 1.00 0.9970 0.9942 0.0826 0.0826 1.00 0.9953 0.9902 0.0774 0.0775
2000 1.00 1.0008 1.0017 0.0557 0.0557 1.00 1.0003 1.0007 0.0518 0.0518
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APPENDIX A. PROOFS OF IDENTIFICATION RESULTS

A.1. Proof of Lemma 3.

Proof. Let νk(x) = E(Yk|X = x) for k ∈ I . By definition and Assumption C,

ϕij(x) = P
(

Uj ≤ u∗j (x)|Ui = u∗i (x), X = x
)

= P
(

Uj ≤ u∗j (x)|Ui = u∗i (x), W = w
)

.

Then, it follows from Darsow, Nguyen, and Olsen (1992) that

P(Uj ≤ u∗j (x)|Ui = u∗i (x), W = w) =
∂Cij(vi, vj; w)

∂vi

∣∣∣
vi=FUi |W(u∗i (x)|w),vj=FUj |W(u∗j (x)|w)

=
∂Cij(vi, vj; w)

∂vi

∣∣∣
vi=E(Yi |X=x),vj=E(Yj|X=x)

.

which is identified by the fact that Cij(·; w) can be identified on the support for all (vi, vj) ∈

SViVj|W=w.

�

APPENDIX B. PROOFS OF STATISTICAL PROPERTIES

B.1. Proof of Proposition 1.

Proof. Our proofs follow Guerre, Perrigne, and Vuong (2000). For the notation brevity, here we

ignore the difference cased by leaving–one–observation–out in the estimator ϕ̂i. Moreover, let

aiN(xn) =
1

Nh3
P

N

∑
` 6=n

∂Kϕ

(
(X1` − x1n)

′β1

hϕ
,
(X2` − x2n)′β2

hϕ

)/
∂ti

be the (infeasible) nonparametric estimator of the derivative

∂

∂t1

{
E(Y1Y2|(X′1β1, X′2β2) = t)× fX′1β1,X′2β2

(t)
} ∣∣∣

t=xn

using the true parameters β. Similarly, we define biN , cjiN , qiN , QN and fXN . By plugging

these infeasible estimators, we define our infeasible estimator AiN(xn) and AN(xn). Further, let
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ϕiN(Xn) = AiN(Xn)/ AN(Xn) and

A1(x) = f 4
X′1β1,X′2β2

[
∂M(x′1β1, x′2β2)

∂t1

∂m2(x′1β1, x′2β2)

∂t2
− ∂m2(x′1β1, x′2β2)

∂t1

∂M(x′1β1, x′2β2)

∂t2

]
,

A2(x) = f 4
X′1β1,X′2β2

[
∂m1(x′1β1, x′2β2)

∂t1

∂M(x′1β1, x′2β2)

∂t2
− ∂M(x′1β1, x′2β2)

∂t1

∂m1(x′1β1, x′2β2)

∂t2

]
,

A(x) = f 4
X′1β1,X′2β2

[
∂m1(x′1β1, x′2β2)

∂t1

∂m2(x′1β1, x′2β2)

∂t2
− ∂m2(x′1β1, x′2β2)

∂t1

∂m1(x′1β1, x′2β2)

∂t2

]
.

Note that

ϕ̂i(x) =
Âi(x)
Â(x)

=
Âi(x)/A(x)
Â(x)/A(x)

=
AiN(x)/A(x) +

[
Âi(x)− AiN(x)

] /
A(x)

1 +
[
AN(x)

/
A(x)− 1

]
+
[
Â(x)− AN(x)

] /
A(x)

.

Hence it suffices to show

sup
‖x‖≤κN

‖AiN(x)/A(x)− Ai(x)/A(x)‖ = Op

(
η−1

N

(
ln N

N

)R/(2R+4)
)

, (12)

sup
‖x‖≤κN

‖AN(x)/A(x)− 1‖ = Op

(
η−1

N

(
ln N

N

)R/(2R+4)
)

, (13)

sup
‖x‖≤κN

∥∥Âi(x)/A(x)− AiN(x)/A(x)
∥∥ = op

(
η−1

N

(
ln N

N

)R/(2R+4)
)

, (14)

sup
‖x‖≤κN

∥∥Â(x)/A(x)− AN(x)/A(x)
∥∥ = op

(
η−1

N

(
ln N

N

)R/(2R+4)
)

. (15)

Equations (12) and (13) are satisfied under Lemmas 5 and 6. We illustrate the argument for eq. (14),

and then eq. (15) is proved analogously. By Lemma 5, it suffice to show

sup
‖x‖≤κN

∥∥Âi(x)− AiN(x)
∥∥ = op

((
ln N

N

)R/(2R+4)
)

.

We will show that sup‖x‖≤κN
|aiN(x)− âi(x)|, sup‖x‖≤κN

∣∣∣biN(x)− b̂ij(x)
∣∣∣, sup‖x‖≤κN

|ciN(x)− ĉi(x)|,

sup‖x‖≤κN
|qiN(x)− q̂i(x)|, sup‖x‖≤κN

∣∣QN(x)− Q̂(x)
∣∣ and sup‖x‖≤κN

∣∣∣ fXN(x)− f̂X(x)
∣∣∣ all

converge to zero at the
√

N rate. Since the arguments for all other terms are quite similar to
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or simpler than those for sup‖x‖≤κN
|ciN(x)− ĉi(x)|, here we only provide a detailed proof for the

latter.

Because β̃i = βi + Op(N−1/2), then for any fixed ε > 0, the following inequality holds with

probability approaching to 1,

|ciN(xn)− ĉi(xn)| =
∣∣∣∣∣ 1

Nh3
ϕ

N

∑
` 6=n

Y1`Y2` ×
{

∂Kϕ

(
(X1` − x1n)

′ β̃1

hϕ
,
(X2` − x2n)′ β̃2

hϕ

)/
∂ti

− ∂Kϕ

(
(X1` − x1n)

′β1

hϕ
,
(X2` − x2n)′β2

hϕ

)/
∂t2

}∣∣∣∣∣
≤ sup
‖β†−β‖≤ε

∣∣∣∣∣ 1
Nh4

ϕ

N

∑
` 6=n

Y1`Y2`× ∂2Kϕ

(
(X1` − x1n)

′β†
1

hϕ
,
(X2` − x2n)′β†

2
hϕ

)/
∂ti∂t1× (X1` − x1n)

′(β̃1 − β1)

∣∣∣∣∣
+ sup
‖β†−β‖≤ε

∣∣∣∣∣ 1
Nh4

P

N

∑
` 6=n

Y1`Y2`× ∂2Kϕ

(
(X1` − x1n)

′β†
1

hϕ
,
(X2` − x2n)′β†

2
hϕ

)/
∂ti∂t2× (X2` − x2n)

′(β̃2 − β2)

∣∣∣∣∣.
By lemma 4, we have

sup
x
|aiN(x)− âi(x)| ≤

∥∥β̃1 − β1
∥∥×Op(1) +

∥∥β̃2 − β2
∥∥×Op(1) = Op(N−1/2). �

Lemma 4. Suppose that Assumptions G, H, J, L and M hold. Thus,

sup
‖x‖≤κN

sup
‖b−β‖≤δ

∥∥∥∥∥ 1
Nh4

P

N

∑
`=1

Y1`Y2` × ∂2Kϕ

(
(X1` − x1)

′b1

hϕ
,
(X2` − x2)′b2

hϕ

)/
∂ti∂tj × (Xj` − xj)

′

∥∥∥∥∥ = Op(1),

Proof. Fix i, j. Let S`(x, b) = 1
h4

ϕ
Y1`Y2` × ∂2Kϕ

(
(X1`−x1)

′b1
hϕ

, (X2`−x2)
′b2

hϕ

)/
∂ti∂tj × (Xj` − xj)

′ as

a random vector indexed by x and b. Let further ψx,b(t) = E
[
E (Y1Y2|X)× (Xj − x′j)

∣∣(X′1b1, X′2b2) = t
]

and φx,b(t) = ψx,b(t)× fX′1b1,X′2b2
(t).6 Then we have

sup
‖x‖≤κN

sup
‖b−β‖≤δ

∥∥∥∥∥ 1
N

N

∑
`=1

S`(x, b)

∥∥∥∥∥ ≤ sup
‖x‖≤κN

sup
‖b−β‖≤δ

∥∥∥∥∥ 1
N

N

∑
`=1

S`(x, b)−ES`(x, b)

∥∥∥∥∥
+ sup
‖x‖≤κN

sup
‖b−β‖≤δ

∥∥∥∥∥ 1
N

N

∑
`=1

ES`(x, b)− ∂2φx,b(x′1b1, x′2b2)/∂t1∂t2

∥∥∥∥∥
+ sup
‖x‖≤κN

sup
‖b−β‖≤δ

∥∥∂2φx,b(x′1b1, x′2b2)/∂t1∂t2
∥∥ .

6Note that we suppress a subscript j in the notation for ψx,b and φx,b.
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By Theorem 1 in Andrews (1992), the first term of the RHS is op(1); and by Assumptions J and L,

the last term is Op(1).

Moreover, for the second term, we have

ES`(x, b) =
1

h4
P

E

[
ψ(X′1`b1, X′2`b2)× ∂2Kϕ

(
(X1` − x1)

′β1

hϕ
,
(X2` − x2)′β2

hϕ

)]

=
1

h2
ϕ

∫
R2

φx,b(x′1b1 − hϕu1, x′2b2 − hϕu2)× ∂2Kϕ(u)/∂t1∂t2du

=
∫

R2
∂2φx,b(x′1b1 − hϕu1, x′2b2 − hϕu2)/∂t1∂t2 × Kϕ (u) du.

By Taylor expansion of order 2 with integral remainder,

∂2φx,b(x′1b1 − hϕu1, x′2b2 − hϕu2)/∂t1∂t2 = ∂2φx,b(x′1b1, x′2b2)/∂t1∂t2

− hϕ

2

∑
k=1

∂3φx,b(x′1b1, x′2b2)

∂t1∂t2∂tk
uk +

h2
ϕ

2

∫ 1

0
(1− s)

2

∑
k1=1

2

∑
k2=1

∂4φx,b(x′1b1 − thϕu1, x′2b2 − thϕu2)

∂t1∂t2∂tk1 ∂tk2

uk1 uk2 ds.

By Assumption J, φx,b has bounded fourth order derivative. Thus, uniformly over x and b

∥∥ES`(x, b)− ∂2φx,b(x′1b1, x′2b2)/∂t1∂t2
∥∥

=
h2

ϕ

2

∥∥∥∥∥
∫

R2

∫ 1

0
(1− t)

2

∑
k1=1

2

∑
k2=1

∂4φx,b(x′1b1 − thϕu1, x′2b2 − thϕu2)

∂t1∂t2∂tk1 ∂tk2

uk1 uk2 Kϕ (u) dtdu

∥∥∥∥∥ ≤ C×
h2

ϕ

2
,

for some C ∈ R+. Thus the second term is op(1). �

Lemma 5. Suppose that Assumptions I and K hold. Then

inf
‖x‖≤κN

‖A(x)‖ = O(ηN).

Proof. By Assumptions I and K

|A(x)| = f 4
X′1β1,X′2β2

(x′1β1, x′2β2)

×
∣∣∣∣∣∂m1(x′1β1, x′2β2)

∂t1
× ∂m2(x′1β1, x′2β2)

∂t2
− ∂m1(x′1β1, x′2β2)

∂t2
× ∂m2(x′1β1, x′2β2)

∂t1

∣∣∣∣∣ ≥ c0ηN . �
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Lemma 6. Suppose that assumptions in Proposition 1 hold. Then

sup
‖x‖≤κN

‖AiN(x)− Ai(x)‖ = Op

((
ln N

N

)R/(2R+4)
)

,

sup
‖x‖≤κN

‖AN(x)− A(x)‖ = Op

((
ln N

N

)R/(2R+4)
)

,

Proof. We only illustrate the argument for sup‖x‖≤κN
‖A1N(x)− A1(x)‖; other results can be

established analogously. It suffices to show that

sup
‖x‖≤κN

∥∥∥∥c1N(x) fXN(x)− a1N(x)QN(x)− f 2
X′1β1,X′2β2

× ∂M(x′1β1, x′2β2)

∂t1

∥∥∥∥ = Op

((
ln N

N

) R
2R+4
)

,

sup
‖x‖≤κN

∥∥∥∥b22N(x) fXN(x)− a2N(x)q2N(x)− f 2
X′1β1,X′2β2

× ∂m2(x′1β1, x′2β2)

∂t2

∥∥∥∥ = Op

((
ln N

N

) R
2R+4
)

,

sup
‖x‖≤κN

∥∥∥∥c2N(x) fXN(x)− a2N(x)QN(x)− f 2
X′1β1,X′2β2

× ∂M(x′1β1, x′2β2)

∂t1

∥∥∥∥ = Op

((
ln N

N

) R
2R+4
)

,

sup
‖x‖≤κN

∥∥∥∥b21N(x) fXN(x)− a1N(x)q2N(x)− f 2
X′1β1,X′2β2

× ∂m2(x′1β1, x′2β2)

∂t2

∥∥∥∥ = Op

((
ln N

N

) R
2R+4
)

.

Again, we provide a detailed proof only for the first term due to the similarity. Let Q(t) =

M(t)× fX′1β1,X′2β2
(t). Because

∂Q(t)
∂t1

=
∂M(t)

∂t1
× fX′1β1,X′2β2

(t) +
∂ fX′1β1,X′2β2

(t)
∂t1

×M(t),

then

f 2
X′1β1,X′2β2

× ∂M(x′1β1, x′2β2)

∂t1
=

∂Q(x′1β1, x′2β2)

∂t1
× fX′1β1,X′2β2

(x′1β1, x′2β2)

−
∂ fX′1β1,X′2β2

(x′1β1, x′2β2)

∂t1
×Q(x′1β1, x′2β2).
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Thus, it suffices to show that

sup
‖x‖≤κN

∥∥∥∥c1N(x)− ∂Q(x′1β1, x′2β2)

∂t1

∥∥∥∥ = Op

((
ln N

N

) R
2R+4
)

, (16)

sup
‖x‖≤κN

∥∥∥ fXN(x)− fX′1β1,X′2β2
(x′1β1, x′2β2)

∥∥∥ = Op

((
ln N

N

) R
2R+4
)

, (17)

sup
‖x‖≤κN

∥∥∥∥∥a1N(x)−
∂ fX′1β1,X′2β2

(x′1β1, x′2β2)

∂t1

∥∥∥∥∥ = Op

((
ln N

N

) R
2R+4
)

, (18)

sup
‖x‖≤κN

∥∥QN(x′1β1, x′2β2)−Q(x′1β1, x′2β2)
∥∥ = Op

((
ln N

N

) R
2R+4
)

. (19)

Equations (17) and (18) directly follows Hansen (2008), Theorem 6, and by following its proof,

eqs. (16) and (19) also obtain, which is straightforward, and hence omitted here.

�
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APPENDIX C. PROOF OF THEOREM 2

Our proof follows Klein and Spady (1993). Throughout appendix C, we introduce some notation,

which is consistent with Klein and Spady (1993).

Let vi(X; ai, bi) ≡ X′i bi + ai ϕi(X) and v̄i(X; ai, bi) ≡ X′i bi + ai ϕ̂i(X). Through, we suppress

the subscript for player i in vi and v̂i, i.e., we use v(x; ai, bi) and v̄(x; ai, bi) to denote vi(x; ai, bi)

and v̄i(x; ai, bi), respectively. Similarly, we will suppress subscript i in the following discussion. Let

vn(ai, bi) ≡ v(Xn; ai, bi) and v̄n(ai, bi) ≡ v̄(Xn; ai, bi). Similarly, by replacing ϕ̂i with the underly-

ing belief ϕi, we can define τ̄n, τ̄0n, τ̄1n, δ̄n, δ̄0n, δ̄1n. Let gv(vn; ai, bi) be the density of vn(ai, bi).

Moreover, for d = 0, 1 let gdv(vn; ai, bi) ≡ P(Yi = d|v(ai, bi) = vn(ai, bi))gv(vn; ai, bi) and for

d = 0, 1

ḡdv(vn; ai, bi) ≡
N

∑
` 6=n

1(Yi` = d)
hP

K
(

v` − vn

hP

)/
(N − 1),

ĝdv(vn; ai, bi) ≡
N

∑
` 6=n

1(Yi` = d)
hP

K
(

v̄` − v̄n

hP

)/
(N − 1),

Let further

L̄N(ai, bi; τ̄) ≡
N

∑
n=1

(τ̄n/2)
{

Yin ln
[
P̄i(vn; ai, bi)

2]+ (1−Yin) ln [1− P̄i(vn; ai, bi)]
2
}/

N

and

P̄i(vn; ai, bi) ≡
[
ḡi1v(vn; ai, bi) + δ̄1n(vn; ai, bi)

] / [
ḡiv(vn; ai, bi) + δ̄n(vn; ai, bi)

]
,

P(vn; ai, bi) ≡ g1v(vn; ai, bi)/gv(vn; ai, bi).

Also, we define the r–th order derivative of any function g with respect to z by

Dr
z[g] =

 g, r = 0,

∂rg/(∂z)r, r = 1, 2, · · · .

Further, we use ‖ · ‖ to denote the Euclidean norm.

Let

Ĝ(αi, βi) ≡
[
∂L̂i/∂(ai, bi)

] ∣∣∣
(ai ,bi)=(αi ,βi)

=
N

∑
n=1

τ̂nr̂nŵn/N,
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where

r̂n ≡
[
Yin − P̂i(Xn; αi, βi)

] /
ĉn, ĉn ≡ ĝv(vn; αi, βi)

[
P̂i(Xn; αi, βi)(1− P̂i(Xn; αi, βi))

]
,

ŵn ≡ ĝv(vn; αi, βi)
[
∂P̂i(Xn; αi, βi)

/
∂(ai, bi)

]
.

Let further

GN(αi, βi) ≡ [∂LN/∂(ai, bi)]
∣∣∣
(ai ,bi)=(αi ,βi)

=
N

∑
n=1

τnrnwn/N,

where

rn ≡ [Yin − Pi(vn; αi, βi)]/cn, cn ≡ [gv(vn; αi, βi) + δn(vn; αi, βi)]

×[Pi(vn; αi, βi)(1− Pi(vn; αi, βi))], wn ≡ gv(vn; αi, βi) [∂P(vn; αi, βi)/∂(ai, bi)]

C.1. Proof for Theorem 2.

Proof. The consistency simply follows the uniform convergence of ϕ̂i to ϕi and the proof for

Theorem 3 in Klein and Spady (1993), which is omitted here.

For asymptotic normality, it suffices to show N1/2Ĝ(αi, βi)− N1/2GN(αi, βi) = op(1), and all

the left simply follows Klein and Spady (1993), Theorem 4.

N1/2Ĝ(αi, βi)− N1/2GN(αi, βi)

= N−1/2
N

∑
n=1

τn(r̂nŵn − rnwn) + N−1/2
N

∑
n=1

(τ̂n − τn)rnwn

+ N−1/2
N

∑
n=1

(τ̂n − τn)(r̂nŵn − rnwn). (20)

For the first term in equation (20), denoted as A,

A = N−1/2
N

∑
n=1

τn(r̂n − rn)wn + N−1/2
N

∑
n=1

τn(r̂n − rn)(ŵn −wn) + N−1/2
N

∑
n=1

τnrn(ŵn −wn).

(21)

For the first term, similar to the arguments for A1 in Lemma 6 of Klein and Spady (1993), it is op(1).

For the second term, because∣∣∣∣∣N−1/2
N

∑
n=1

τn(r̂n − rn)(ŵn − wn)

∣∣∣∣∣ ≤ N1/2 sup |τn(r̂n − rn)| sup |τn(ŵn − wn)|
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By definition

r̂n − rn =
Yin

ĝ1vn
− Yin

g1vn
+

1−Yin

ĝ0vn
− 1−Yin

g0vn
.

By Lemma 7, we have

τn
Yin

ĝ1vn
= τn

Yin/g1vn

ĝ1vn
/

g1vn
= τn

Yin/g1vn

1 + (ĝ1vn − g1vn)
/

g1vn
= τn

Yin

g1vn
+ τn

Op
(√

ln N/NhP ∨ h2)
g1vn

,

then

sup
∣∣∣∣τn

Yin

ĝ1vn
− τn

Yin

g1vn

∣∣∣∣ = Op

(√
ln N/NhP ∨ h2

)
.

Similarly,

sup
∣∣∣∣τn

1−Yin

ĝ0vn
− τn

1−Yin

g0vn

∣∣∣∣ = Op

(√
ln N/NhP ∨ h2

)
.

Then we have sup |τn(r̂n − rn)| = Op

(
(ln N/N)2/(2p+3)

)
. By a similar argument, sup |τn(ŵn − wn)| =

Op

(√
ln N/Nh3

N ∨ h2
)

. Further, by the condition (ii) in assumption R,

N1/2 sup |τn(r̂n − rn)| sup |τn(ŵn − wn)| = op(1).

For the last term in the RHS of equation (21), denoted by A3, we have

E
(
A2

3
)
=

N

∑
n=1

E
[
τ2

nr2
n(ŵn − wn)

2] /N + E ∑
` 6=n

rnr`τnτ`(ŵn − wn)(ŵ` − w`)
/

N.

By lemma 7 and Chung(1974, Thm. 4.5.2), the first term is op(1), Note that the second term is

more complicated than the corresponding part in Klein and Spady (1993). Recall that, by definition,

ϕ̂i(Xn) is estimated by leaving out one observation Yn. Similarly, we define ϕi(Xn; `) by leaving

out two observations Yn and Y`. Thus we can define wn by replacing ϕ̂i(Xk) with ϕi(Xk; n) for

all k 6= n and ϕ̂i(Xn) with ϕi(Xn; `) in w̃n. Note that wn depends neither on Yin and Yi`, then

by a similar argument as in Klein and Spady (1993), Lemma 6, we have E ∑` 6=n rnr`τnτ`(wn −

wn)(w` − w`)
/

N = op(1). It should also be noted that wn − w̃n = O(N−1) uniformly over x,

since ϕi(Xn; k)− ϕ̂i(Xn) = Op(N−1) uniformly. Therefore the second term in the RHS of above

equation is also op(1).

Turning to the second term in (20) above, under a similar argument used to analysis A3, it is op(1).

The proof for the last term in equation (20) being op(1) simply follows the corresponding part of the

arguments in Klein and Spady (1993).
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Lemma 7. Suppose that assumptions in Theorem 2 hold. Then for y = 0, 1,

sup
∣∣g̃yv(vn; αi, βi)− gyv(vn; αi, βi)

∣∣ = Op

(√
ln N/NhP ∨ h2

)
sup

∣∣∣D1
(ai ,bi)

g̃yv(vn; αi, βi)− D1
(ai ,bi)

gyv(vn; αi, βi)
∣∣∣ = Op

(√
ln N/Nh3

N ∨ h2
)

.

Proof. First, let PN g̃yv(vn; αi, βi) ≡
∫ 1(Yi=y)

hP
K
(

v̂(x;αi ,βi)−v̂(X;αi ,βi)
hP

)
dFXY and PN gyv(vn; αi, βi) ≡∫ 1(Yi=y)

hP
K
(

v(x;αi ,βi)−v(X;αi ,βi)
hP

)
dFXY. By triangular inequality,

sup
x

∣∣g̃yv(vn; αi, βi)−PN g̃yv(vn; αi, βi)
∣∣

≤ sup
x

sup
‖ϕ̂−ϕ‖↓0

∣∣∣g̃yv(vn; αi, βi)−PN g̃yv(vn; αi, βi)−
[
ĝyv(vn; αi, βi)−PN gyv(vn; αi, βi)

] ∣∣∣
+ sup

x

∣∣ĝyv(vn; αi, βi)−PN gyv(vn; αi, βi)
∣∣ ,

where the first term is op(N−1/2), referred as the stochastic equicontinuity condition, by Theorem

11.16 in Kosorok (2008).

Next, sup
∣∣∣Dr

(ai ,bi)
ĝyv(vn; αi, βi)−PN gyv(vn; αi, βi)

∣∣∣ = Op

(√
ln N/Nh1+2r

P

)
by Hansen

(2008), Theorem 8. Hence,

sup
∣∣g̃yv(vn; αi, βi)− gyv(vn; αi, βi)

∣∣ ≤ sup
∣∣PN g̃yv(vn; αi, βi)− gyv(vn; αi, βi)

∣∣+Op

(
(ln N/NhP)

1/2
)

Let ∆(x) = (ϕ̂i(x)− ϕi(x))/hP. Note that, uniformly on x

PN g̃yv(vn; αi, βi) =
∫

R2d

1
h

K
(

v(x; αi, βi)− v(t; αi, βi)

hP
+ ∆(x)− ∆(t)

)
g(v(t; αi, βi))dt

=
∫

K (u) g
[
(v(t; αi, βi)− (u− ∆(x) + ∆(t))hP

]
dt

= g [v(t; αi, βi)] + Op

(
(ln N/N)R/(2R+4)

)
+ O(h2

N).

By assumption R,

sup
∣∣g̃yv(vn; αi, βi)− gyv(vn; αi, βi)

∣∣ = Op

(√
ln N/NhP ∨ h2

)
.
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Similarly,

sup
∣∣∣D1(ai, bi)g̃yv(vn; αi, βi)− D1(ai, bi)gyv(vn; αi, βi)

∣∣∣ = Op

(√
ln N/Nh3

N ∨ h2
)

.
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