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ABSTRACT. This paper studies the rationalization and identification of discrete games with

players whose private information can be correlated. Our approach is fully nonparametric.

First, under monotone pure strategy BNE, we characterize all the restrictions if any on the

distribution of players’ choices imposed by the game-theoretic model as well as restrictions

associated with three assumptions that have been frequently used in the empirical analysis

of discrete games. Namely, we consider additive separability of the private information in

the payoffs, exogeneity of the payoff shifters relative to the private information, and mutual

independence of the private information conditional on the payoff shifters. Second, we

study the nonparametric identification of the payoff functions and type joint distribution

under exclusion restrictions and rank conditions. In particular, we show that under the

exogeneity assumption our structural model is identified up to a location-scale normalization

in both nonseparable and separable cases. Last, we discuss possible estimation and testing

procedures.
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1. INTRODUCTION

Over the last decades, games with incomplete information have been much successful

to understand the strategic interactions among agents in the analysis of various economic

and social situations. A leading example is auctions with e.g. Vickrey (1961), Riley and

Samuelson ( 1981), Milgrom and Weber (1982) for the theoretical side and Porter (1995),

Guerre, Perrigne and Vuong (2000) and Athey and Haile (2002) for the empirical component.

In this paper, we study the identification of static binary games of incomplete information

where players have correlated types.1 We also characterize all the restrictions if any imposed

by such models on the observables, which are the players’ choices. Following the work by

Laffont and Vuong (1996) and Athey and Haile (2007) for auctions, our approach is fully

nonparametric.

The empirical analysis of discrete games is almost thirty years old. In particular, the range

of applications includes, among others, labor force participation (Bjorn and Vuong, 1984;

Soetevent and Kooreman, 2007), firms’ entry decisions ((Bresnahan and Reiss, 1990, 1991;

Berry, 1992; Ciliberto and Tamer, 2009; Jia, 2008). These papers deal with discrete games

under complete information. More recently, discrete games under incomplete information

have been used to analyze social interactions by Brock and Durlauf (2001); Xu (2011), firm

entry and location choices by Seim (2006), timing choices of radio stations commercials by

Sweeting (2009), stock market analysts’ recommendations by Bajari, Hong, Krainer, and

Nekipelov (2010), capital investment strategies by Aradillas-Lopez (2010) and local grocery

markets by Grieco (2011).

Our paper contributes to this literature in several aspects. First, we focus on monotone

pure strategy Bayesian Nash equilibria (BNE) throughout. Monotonicity is a desirable prop-

erty in many applications for both theoretical and empirical reasons. For instance, White, Xu,

and Chalak (2011) show that monotone strategies are never worse off than non–monotone

strategies in a private value auction model. Xu (2010) shows that the only equilibrium is a

1To simplify, we focus on binary games in this paper. We left the extension of our approach to general discrete
games for future research.
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monotone pure strategy BNE in an entry game when the strategic component coefficients

are reasonably small. Moreover, the recent literature on nonparametric and nonseparable

models heavily relies on the monotonicity relationship between observed variables and

latent variables to establish identification results for structural functions (see, e.g., Chesher,

2003; Imbens and Newey, 2009; Matzkin, 2003). Chesher (2005) and Jun, Pinkse, and Xu

(2010) exploit weak monotonicity in a triangular system with discrete endogenous variable

to achieve partial and point identification for structural equations. On theoretical grounds,

Athey (2001) provided the seminal result on the existence of a monotone pure strategy BNE

whenever a Bayesian game obeys a Spence–Mirlees single–crossing restriction. Relying on

the powerful notion of contractibility, Reny (2011) has extended Athey’s results and related

results by McAdams (2003) to give weaker conditions ensuring the existence of a monotone

pure strategy BNE. Using Reny’s results, we show that a monotone pure strategy BNE

exists under a high-level assumption, namely, monotone expected payoffs in our setting. In

particular, such a high-level assumption is satisfied if the game is of strategic complement

and private information are positively regression dependent.

Second, we allow players’ private information to be correlated. Allowing correlated

private information is motivated primarily by empirical concerns. In particular, we do not

require the mutual independence of private information across players, which is convenient

but also imposes the strong restriction as we shall see that players’ choices must be inde-

pendent, which can be invalidated by the data.2 Mutual independence, however, has been

widely adopted in the empirical literature. See e.g. Brock and Durlauf (2001), Pesendorfer

and Schmidt-Dengler (2003), Seim (2006), Aguirregabiria and Mira (2007), Sweeting (2009),

Bajari, Hong, Krainer, and Nekipelov (2010), Tang (2010), Beresteanu, Molchanov, and

Molinari (2011), Lewbel and Tang (2012) and De Paula and Tang (2012). Exceptions include

Aradillas-Lopez (2010), Xu (2010), Wan and Xu (2010) and Liu and Xu (2012). When private

information are correlated, the standard equilibrium concept – the pure strategy Bayesian

2A model featured with unobserved heterogeneity and independent private information also generates depen-
dence among players’ choices conditional on observed regressors (see Grieco, 2011).
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Nash Equilibrium (BNE) – requires that each player’s beliefs on rivals’ choices depends on

her private information. This means that each player’s own private information is informa-

tive about rivals’ equilibrium actions and each player makes adjustments to her beliefs on

rivals’ potential behaviors according to its realization. Alternatively, Aradillas-Lopez (2010)

adopts another equilibrium concept, in which each player’s equilibrium beliefs do not rely

on her private information.

Third, our analysis is fully nonparametric in the sense that players’ payoffs and the

joint distribution of the players’ private information are subject to some mild smoothness

conditions only. As far as we know, with the exception of De Paula and Tang (2012) and

Lewbel and Tang (2012), every paper analyzing empirical discrete games has imposed

parametric restrictions on the payoffs and/or the distribution of the private information.

For instance, Brock and Durlauf (2001), Seim (2006), Sweeting (2009) and Xu (2010) have

specified both payoffs and the private information distribution parametrically. In a semi-

parametric context, Aguirregabiria and Mira (2007) , Aradillas-Lopez (2010), Tang (2010),

Wan and Xu (2010), Beresteanu, Molchanov, and Molinari (2011) and Liu and Xu (2012)

parameterize players’ payoffs, while Bajari, Hong, Krainer, and Nekipelov (2010) parameter-

ize the private information distribution. On the other hand, De Paula and Tang (2012) and

Lewbel and Tang (2012) do not introduce any parameter but impose some strong functional

form restrictions on the payoffs. In particular, they impose multiplicative separability in

the strategic effect and assume that it is a known function of the other players’ choices.

In addition to being fully nonparametric, we do not require either that players’ private

information enter additively in the payoffs. Consequently, our baseline discrete game is

the most general one and closest to that considered in game theory. We show that such a

model imposes essentially no restrictions on the distribution of players’ choices. In other

words, monotone pure strategy BNE can explain almost all observed choice probabilities in

discrete games.

In view of the preceding result, we consider three assumptions that have been frequently

used in the empirical analysis of discrete games. First, we consider the assumption that the
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private information enters additively in the player’s payoff. To the best of our knowledge,

such an assumption has been made in every paper analyzing discrete games empirically. We

show again that the resulting model imposes essentially no restrictions on the distribution

of players’ choices. We also show that the players’ payoffs and the joint distribution of

the players’ private information are not identified nonparametrically whether the private

information are additively separable or not.

A second assumption that has been frequently imposed in empirical work is the exogene-

ity of some variables shifting the players’ payoffs relative to players’ private information.

Papers using such an assumption are Brock and Durlauf (2001), Seim (2006), Sweeting

(2009), Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov (2010), De Paula and

Tang (2012), Lewbel and Tang (2012) and Liu and Xu (2012). We show that the resulting

model restricts the distribution of players’ choices conditional upon the payoff shifters and

we characterize all those restrictions. Specifically, the exogeneity assumption restricts the

joint choice probability to be a monotone function of the corresponding marginal choice

probabilities. With the exogeneity assumption, we show that one can identify the belief

of the player at the margin under a mild support condition. We then identify the players’

payoffs and distribution of private information up to a scale-location normalization under

some exclusion restrictions and rank conditions in both separable and nonseparable cases.

Our identification result can be viewed as an extension to a game setup of the nonparametric

identification results obtained by Matzkin (1992) for single–agent binary response models.

An important difference is that the discrete game setup requires some exclusion restrictions

for identification. Such restrictions have been used frequently in the empirical analysis

of discrete games. See, e.g., Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov

(2010), Tang (2010), Wan and Xu (2010), De Paula and Tang (2012) and Lewbel and Tang

(2012).

For completeness, we consider a third assumption, namely the mutual independence

of players’ private information. Such an assumption has been used by several authors

including Brock and Durlauf (2001), Seim (2006), Sweeting (2009), Bajari, Hong, Krainer,
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and Nekipelov (2010), Tang (2010), Beresteanu, Molchanov, and Molinari (2011), De Paula

and Tang (2012) and Lewbel and Tang (2012). Specifically, we characterize all the restrictions

imposed by exogeneity and mutual independence as considered by Brock and Durlauf

(2001), Seim (2006), Sweeting (2009), Bajari, Hong, Krainer, and Nekipelov (2010), De Paula

and Tang (2012) and Lewbel and Tang (2012). We show that the only restriction is that the

players’ choices are mutually independent conditionally on the payoff shifters. In particular,

we show that the restrictions imposed by mutual independence are stronger than those

imposed by exogeneity. In other words, exogeneity is redundant in terms of explaining

players’ choices as soon as mutual independence is imposed.

The paper is arranged as follows. We introduce our baseline model in Section 2. We

define and establish the existence of a monotone pure strategy BNE. We also characterize

such equilibrium strategies under additive separability of the private information. In

Section 3, we study the restrictions imposed by the baseline model, whether the private

information are additively separable or not. We also derive all the restrictions imposed

by the exogeneity and mutual independence assumptions. In Section 4, we establish

the identification of the belief of the player at the margin under exogeneity only. We

then establish the nonparametric identification of the model primitives for the additively

nonseparable and separable cases under some exclusion restrictions and rank conditions.

Section 5 concludes with a discussion of the case when the same monotone pure strategy

BNE is not played across identical games. We also discuss briefly estimation and testing in

the nonseparable and separable cases.

2. MONOTONE PURE STRATEGY BNE

We consider a discrete game of incomplete information. There is a finite number of

players, indexed by i = 1, 2, · · · , I. Each player simultaneously chooses a binary action

Yi ∈ {0, 1}. Let A = {0, 1}I be the space of possible actions for all players and Y =

(Y1, · · · , YI) ∈ A be an action profile. Following the convention, let A−i and Y−i denote the

action space and a profile of actions for all players except i, respectively. Let X ∈ SX ⊂ Rd
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be a payoff relevant random vector, which is publicly observed by all players and also by

the researcher.3 For instance, X can include individual characteristics of the players as well

as specific variables for the game. For each player i, we further assume that the random

variable Ui ∈ R is her private information which is not observed by other players. Let

U = (U1, · · · , UI) and FU|X(·|·) be the conditional distribution function of U given the state

variable X. The conditional distribution FU|X(·|·) is assumed to be common knowledge.4

The payoff for player i is described as

Πi(Y, X, Ui) =

 πi(Y−i, X, Ui), if Yi = 1,

0, if Yi = 0,

where πi is a structural function in our model. The zero payoff for action Yi = 0 is a

standard payoff normalization in binary response models.

Following the literature on Bayesian games, player i’s decision rule is a function Yi =

δi(X, Ui), where δi(·, ·) : Rd ×R→ {0, 1} maps all the information that she knows to the

binary choice set. For i = 1, · · · , I, let a−i = (a1, · · · , ai−1, ai+1, · · · , aI) ∈ A−i. Given a

strategy profile δ = (δ1, · · · , δI), we denote by σδ
−i(a−i|x, ui) the conditional probability of

others choosing a−i ∈ A−i, i.e.,

σδ
−i(a−i|x, ui) ≡ Pδ (Y−i = a−i|X = x, Ui = ui)

=
∫

RI−1

[
∏
j 6=i

1
{

δj(x, uj) = aj
}]
× fU−i |X,Ui

(u−i|x, ui)du−i

where 1 {·} is the indicator function and fU−i |X,Ui
(·|·, ·) is the conditional density function

of U−i given X and Ui. Here Pδ denotes the (conditional) probability measure under the

strategy profile δ.

The equilibrium concept we adopt is the pure strategy Bayesian Nash equilibrium (BNE).

Mixed strategy equilibria are not considered hereafter, since with probability one, each

3Grieco (2011) discusses the case with unobserved heterogeneity in publicly observed state variables.
4For a standard notion of common knowledge in game theory, see, e.g., Fudenberg and Tirole (1991), Chapter
14.
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player has a unique best response in our case. Fix X = x ∈ SX. We now characterize BNEs

in our discrete game. In equilibrium, player i with Ui = ui chooses action 1 if and only if

her expected payoff is greater than zero, i.e.,

δ∗i (x, ui) = 1

[
∑
a−i

πi(a−i, x, ui)σ
∗
−i(a−i|x, ui) ≥ 0

]
, (1)

where δ∗ = (δ∗1 , · · · , δ∗I ) is the equilibrium strategy profile and σ∗−i(a−i|x, ui) is a short

notation for σδ∗
−i(a−i|x, ui). Note that σ∗−i depends on δ∗−i. Hence, eq. (1) for i = 1, · · · , I

defines a simultaneous equation system in δ∗ referred to as “mutual consistency”. A pure

strategy BNE is a fixed point δ∗ of such a system, which holds for all u = (u1, . . . , uI) in the

support SU|X=x. Ensuring equilibrium existence in Bayesian games is a complex and deep

subject in the literature. It is well known that a solution of such an equilibrium generally

exists in a broad class of Bayesian games (see, e.g., Vives, 1990).

Recently, much attention has focused on monotone pure strategy BNEs, since monotonic-

ity is a desirable property in many applications such as auctions, entry, and global games.

A monotone pure strategy BNE is defined as follows:

Definition 1 (Monotone pure strategy BNE). Fix x ∈ SX. A pure strategy profile δ∗(x) ≡

(δ∗1 (x, ·), · · · , δ∗I (x, ·)), where δ∗i (x, ·) : SUi |X=x → {0, 1}, is a monotone pure strategy BNE if

δ∗(x) is a BNE and δ∗i (x, ·) is a monotone function on SUi |X=x for every i = 1, · · · , I.

Monotone pure strategy BNEs are easier to characterize than general BNEs. Fix X = x. In

a monotone pure strategy BNE, players’ strategies can be explicitly defined by a threshold

profile (u∗1(x), · · · , u∗I (x)) (recall that δ∗i can take only two values, 0 or 1.) Formally, a

monotone pure strategy BNE can be represented by a profile of cutoff values: u∗(x) ≡

(u∗1(x), · · · , u∗I (x)) ∈ SU|X=x, where u∗i (·) : SX → SUi , such that δ∗i (x, ui) = 1 [ui ≤ u∗i (x)],

or δ∗i (x, ui) = 1 [ui > u∗i (x)].5 Without loss of generality, we restrict our attention to mono-

tone decreasing pure strategy BNEs hereafter. This serves as a normalization. To see this,

suppose in a structure [π; FU|X], player i’s equilibrium strategy is a monotone increasing

5The left–continuity of strategies considered hereafter is not restrictive given our assumptions below.
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function for some fixed x ∈ SX, i.e. δ∗i (x, ·) = 1 [· ≥ u∗i (x)]. We can then construct an

observationally equivalent structure [π̃; F̃U|X] by letting π̃i(·, x, ui) = πi(·, x,−ui) for all

ui ∈ R with π̃j = πj (j 6= i) and F̃U|X(·|x) = FŨ|X(·|x), where Ũ differs from U only in its

i–th argument: Ũi = −Ui. It can be shown that in equilibrium for the constructed structure,

i’s strategy is monotone decreasing, i.e. δ̃∗i (x, ·) = 1 [· ≤ −u∗i (x)].

Given equilibrium monotone decreasing strategies of the form δ∗i (x, ui) = 1 [ui ≤ u∗i (x)]

for i = 1, · · · , I, the mutual consistency defined by eq. (1) for a BNE solution requires that

∀x ∈ SX,

ui ≤ u∗i (x)⇐⇒ Eδ∗
[
πi(Y−i, X, Ui)

∣∣X = x, Ui = ui
]
≥ 0, (2)

where Eδ∗ denotes the (conditional) expectation under the strategy profile δ∗. Without

causing any confusion, we will suppress the subscript δ∗ when it is an equilibrium strategy

profile. In eq. (2), the conditional distribution of Y−i given X = x and Ui = ui, i.e. P(Y−i =

a−i|X = x, Ui = ui), can be written as:

σ∗−i(a−i|x, ui) = P
[
∀aj = 1, Uj ≤ u∗j (X); ∀aj = 0, Uj > u∗j (X)

∣∣X = x, Ui = ui

]
. (3)

Under Assumption R below, the u∗j (x)s, if not on the support boundary, are defined by the

set of simultaneous equations:

∑
a−i

πi(a−i, x, u∗i (x))σ∗−i(a−i|x, u∗i (x)) = 0 (4)

for i = 1, . . . , I.

The seminal work on the existence of a monotone pure strategy BNE in games of incom-

plete information was first provided by Athey (2001) in both supermodular and logsupermod-

ular games, and later extended by McAdams (2003) and Reny (2011). Applying Reny (2011)

Theorem 4.1, we establish the existence of monotone pure strategy BNEs in our binary game

under some weak regularity assumptions.

Assumption R (Conditional Radon–Nikodym Density). For every x ∈ SX, the conditional

distribution of U given X = x is absolutely continuous w.r.t. Lebesgue measure and has a continuous
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positive conditional Radon–Nikodym density fU|X(·|x) a.e. over the nonempty interior of its

hypercube support SU|X=x.

Assumption R allows the support of U given X = x to be bounded, namely of the

form ×i=1,...,I [ui(x), ui(x)] for some finite ui(x) and ui(x) as frequently used when Ui is i’s

private information, or unbounded as when SU|X=x = RI used typically in binary models.

Assumption R can be greatly weakened as shown by Reny (2011).

Assumption M (Monotone Decreasing Expected Payoff). Fix an arbitrary x ∈ SX. For any

monotone decreasing pure strategy profile δ, Eδ

[
πi(Y−i, X, Ui)

∣∣X = x, Ui = ui
]

is a monotone

decreasing function in ui ∈ SUi |X=x.

Assumption M guarantees that the best response function is monotone decreasing in ui if

all other players adopt monotone decreasing pure strategies.

Lemma 1. Suppose that Assumptions R and M hold. For any x ∈ SX, there exists a monotone

decreasing pure strategy BNE.

Proof. See Appendix A.1 �

Lemma 8 in Appendix A.2 provides some sufficient primitive conditions for Assumption

M. Specifially, we assume positive regression dependence across Uis given X, strategic

complementarity of players’ actions and non-increasing payoffs in the Uis. Thus, monotone

decreasing pure strategy BNEs generally exist in a large class of binary games. Note

that Lemma 1 is silent about the existence of BNEs with non–monotone strategies. In a

parametric setup of two–player binary games, Xu (2010) shows that non–monotone strategy

BNEs can be ruled out under further restrictions on the strategic component coefficients

and the correlation between private information. Lemma 1 does not ensure either that the

monotone decreasing pure strategy BNE is unique. Throughout our analysis, we assume

that only one monotone decreasing pure strategy BNE is played. In the Conclusion, we

discuss the case when such an assumption is relaxed.
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An assumption made in every paper in the empirical discrete game literature is the

additive separability of the error terms in the payoffs.

Assumption S (Additive Separability). We have πi(a−i, x, ui) = πi(a−i, x) − ui for every

i, a−i, x and ui.

In Assumption S, the negative sign in front of ui is only for notational convenience.

Assumption S allows us to represent equilibrium strategies as a semi–linear–index binary

response model as shown in the following lemma.

Lemma 2. Suppose that Assumptions R, M and S hold. If a monotone decreasing pure strategy

BNE is being played, i.e., δ∗ = (δ∗1 , · · · , δ∗I ) where δ∗i is a monotone decreasing function on SUi |X,

then equilibrium choices can be written as a semi–linear–index binary response model:

Yi = 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i(a−i|X, u∗i (X))

]
, (5)

Proof. See Appendix A.3. �

In particular, when 0 < E(Yi|X = x) < 1 for all i, the profile of thresholds u∗(x) =

(u∗1(x), . . . , u∗I (x)) is a solution in ×I
i=1SUi |X=x of the system of I equations:

∑a−i
πi(a−i, x)σ∗−i(a−i|x, u∗i (x)) = u∗i (x), ∀i = 1, · · · , I, (6)

which is a special case of eq. (4).6 The representation in eq. (5) of the equilibrium strategies

as a semi–linear–index binary response model relates to single-agent binary threshold

crossing models studied e.g. by Matzkin (1992). We will show in Section 4 that the belief of

the player at the margin σ∗−i in eq. (4) and (6) can be nonparametrically identified under

additional weak conditions. The player at the margin is the one that receives a private

information equal to the threshold ui = u∗i (x) so that she is indifferent between action 1

and 0.

6In eq. (6) it is understood that u∗i (x) = ui(x) and u∗i (x) = ui(x) if Eδ∗
[
πi(Y−i, X)

∣∣X = x, Ui = ui(x)
]
< ui(x)

and Eδ∗
[
πi(Y−i, X)

∣∣X = x, Ui = ui(x)
]
> ui(x), respectively.
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3. RATIONALIZATION

In this section we will study the baseline model defined by Assumptions R and M as

well as three other models obtained by imposing additional assumptions frequently made

in the empirical game literature such as Assumption S. Specifically, we will characterize all

the restrictions imposed on the distribution of observables (Y, X) by each of these models.

We will say that a distribution of the observables is rationalized by a model if and only if it

satisfies all the restrictions of the model. In other words, a distribution of the observables

is rationalized if and only if there is a structure (not necessarily unique) in the model that

generates such a distribution.

Besides Assumption S introduced above, we consider two additional assumptions. The

first is the exogeneity of X relative to U, an assumption that has been frequently made in the

empirical discrete game literature. See, e.g. Brock and Durlauf (2001), Seim (2006), Sweeting

(2009), Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov (2010), De Paula and

Tang (2012), Lewbel and Tang (2012) and Liu and Xu (2012).

Assumption E (Exogeneity). X and U are independent of each other.7

Another assumption called as mutual independence has been widely used in the litera-

ture. See, e.g. Brock and Durlauf (2001), Seim (2006), Sweeting (2009), Bajari, Hong, Krainer,

and Nekipelov (2010), Tang (2010), Beresteanu, Molchanov, and Molinari (2011), De Paula

and Tang (2012) and Lewbel and Tang (2012).

Assumption I (Mutual Independence). U1, · · · , UI are mutually independent conditional on X.

7Our results can be easily extended to the weaker assumption that Z and U are independent from each other
conditional on W, where X = (W, Z).
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Let S ≡ [π; FU|X]. We consider the following models (classes of structures):

M1 ≡
{

S : Assumptions R and M hold and

a single monotone decreasing pure strategy BNE is played
}

,

M2 ≡ {S ∈ M1 : Assumption S holds} ,

M3 ≡ {S ∈ M2 : Assumption E holds} ,

M4 ≡ {S ∈ M3 : Assumption I holds} .

The last requirement inM1 is not restrictive when there is a unique monotone decreasing

pure strategy BNE. When this is not the case, we follow most of the literature by assuming

that the same equilibrium is played in the DGP for a given x. Relaxing such a requirement

has been addressed in recent work and will be discussed in the Conclusion. Note that

M1 )M2 )M3 )M4.

We define some notation for our following discussion. Fix a structure S ∈ M1, let

αi(x) ≡ FUi |X(u
∗
i (x)|x). Because equilibrium strategies are monotone decreasing, it is

straightforward that αi(x) = E(Yi|X = x). For every p = 2, · · · , I, and 1 ≤ i1 < · · · < ip ≤

I, let CUi1 ,··· ,Uip |X(·, . . . , ·|·) be the conditional copula function of (Ui1 , · · · , Uip) given X, i.e.

∀(αi1 , · · · , αip) ∈ [0, 1]p and x ∈ SX,

CUi1 ,··· ,Uip |X(αi1 , · · · , αip |x) ≡ FUi1 ,··· ,Uip |X

(
F−1

Ui1 |X
(αi1 |x), · · · , F−1

Uip |X
(αip |x)

∣∣∣x) .

The next proposition determines distributions of Y given X that can be rationalized by a

structure inM1.

Proposition 1. A conditional distribution FY|X(·|·) is rationalized by a structure in M1 if for

every x ∈ SX and a ∈ A, P(Y = a|X = x) = 0 implies that P(Yi = ai|X = x) = 0 for some i.

Proof. See Appendix B.1 �

Thus,M1 rationalizes all distributions for Y given X that belong to the interior of the

simplex in R2I−k
(0 ≤ k ≤ I). In particular,M1 rationalizes all the distributions with strictly
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positive choice probabilities. Proposition 1 also indicates that the only possible distributions

that cannot be rationalized by M1 satisfy P(Y = a|X = x) = 0 for some a ∈ A, i.e

distributions for which there are “structural zeros.” As a matter of fact, it is possible to

characterize all those distributions that cannot be rationalized byM1.8 They arise because

of Assumption R. As noted earlier, one can replace the latter by Reny (2011)’s weaker

assumptions. Lemma 9 in Appendix B.2 then shows that any distribution for Y given X can

be rationalized. In other words, our binary game-theoretical modelM1 imposes essentially

no restrictions on the distribution of observables.

We now turn to the rationalization of M2. To do so, we establish the observational

equivalence betweenM1 andM2 despiteM1 )M2.

Lemma 3. For any given structure S ≡ [π; FU|X] ∈ M1, there always exists an observationally

equivalent structure S̃ ≡ [π̃; F̃U|X] ∈ M2.

Proof. See Appendix B.3 �

The next proposition follows immediately from Lemma 3.

Proposition 2. A conditional distribution FY|X(·|·) is rationalized by a structure inM1 if and

only if it is rationalized by a structure inM2.

In particular, additive separability of private information in the payoffs (Assumption

S) does not impose any additional restrictions relative to modelM1. Moreover, it follows

from Proposition 1 thatM2 can still rationalize all distributions for Y given X that belong to

the interior of the simplex in R2I−k
with 0 ≤ k ≤ I. In other words,M2 imposes essentially

no restrictions on the distribution of observables.

Next, we consider the rationalization ofM3. To do so, we first provide a necessary and

sufficient condition for two structures inM2 to be observationally equivalent.

Lemma 4. Two structures S ≡ [π; FU|X] and S̃ ≡ [π̃; F̃U|X] inM2 are observationally equivalent

if and only if for every x ∈ SX,

8Such a result is available upon request to the authors.
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(i) ∀ i = 1, · · · , I, we have αi(x) = α̃i(x).

(ii) ∀ p = 2, · · · , I, and 1 ≤ i1 < · · · < ip ≤ I, we have

CUi1 ,··· ,Uip |X

(
αi1(x), · · · , αip(x)|x)

∣∣x) = C̃Ui1 ,··· ,Uip |X

(
α̃i1(x), · · · , α̃ip(x)|x)

∣∣x) .

Proof. See Appendix B.4. �

Lemma 4 characterizes the observational equivalence of two structures inM2 from two

aspects: Condition (i) relates the conditional marginal distributions of Ui given X and the

payoffs in the two structures; Condition (ii) equates the conditional dependence among the

Uis given X between the two structures using the conditional copula function.

Based on Lemma 4, we can now give a necessary and sufficient condition for a structure

inM2 to be observationally equivalent to a structure inM3.

Lemma 5. For any given structure S ∈ M2, there exists an observationally equivalent structure

S̃ ∈ M3 if and only if ∀p = 2, · · · , I, and ∀ 1 ≤ i1 < · · · < ip ≤ I

(i) ∀x ∈ SX, we have CUi1 ,··· ,Uip |X(αi1(x), · · · , αip(x)|x) = mp(αi1(x), · · · , αip(x)) where

mp(αi1(x), · · · , αip(x))

≡ E
[
CUi1 ,··· ,Uip |X

(
αi1(X), · · · αip(X)

∣∣X) |αi1(X) = αi1(x), · · · , αip(X) = αip(x)
]
(7)

(ii) mp(·, · · · , ·) is monotone strictly increasing on Sαi1 (X),··· ,αip (X) except at values for which

some coordinates are zero.

(iii) mp(·, · · · , ·) is continuously differentiable in the interior of Sαi1 (X),··· , αip (X).

Proof. See Appendix B.5. �

Lemma 5 shows that condition (i) in Lemma 4 does not bind for a structure inM2 to be

observationally equivalent to a structure inM3. It is due to the fact that the marginal choice

probabilities generated by any structure inM2 can always be matched by I single-agent

binary threshold crossing models. Specifically, for any S ≡ (π; FU|X(·|x)) ∈ M2 with cutoff

values of (u∗1(x), · · · , u∗I (x)), we can let π̃i(a−i, x, ui) = FUi |X(u
∗
i (x)|x)− ui and F̃Ui |X(·|x)

15



be the cdf of uniform distribution on [0, 1]. It can be shown that the constructed structure

S̃ ≡ (π̃; F̃U|X) generates the same marginal choice probabilities as the given structure S.

Thus, Lemma 5 requires only conditions (i)–(iii) on the copula of the structure inM2. Such

conditions arise as mp(·, · · · , ·) can be viewed as a copula in a model with exogenous payoff

shifters, i.e. a modelM3. For instance, conditions (ii)-(iii) follow from the properties of a

copula.

We can now characterize all the restrictions imposed on the distribution of observables

by modelM3. Because modelM2 does not impose any restriction by Proposition 1 and

Proposition 2, these restrictions are due to Assumption E only. 9 Essentially, the following

proposition translates the conditions (i)–(iii) in Lemma 5 in terms of observables.

Proposition 3. A conditional distribution FY|X(·|·) rationalized by a structure in M2 is also

rationalized by a structure inM3 if and only if ∀p = 2, · · · , I and ∀ 1 ≤ i1 < · · · < ip ≤ I,

(R1): ∀ x ∈ SX, we have

E

(
p

∏
j=1

Yij

∣∣∣X = x

)
= E

(
p

∏
j=1

Yij

∣∣∣αi1(X) = αi1(x), · · · , αip(X) = αip(x)

)
.

(R2): E
(

∏
p
j=1 Yij |αi1(X) = ·, · · · , αip(X) = ·

)
is monotone strictly increasing on Sαi1 (X),··· ,αip (X)

except at values for which some coordinates are zero.

(R3): E
(

∏
p
j=1 Yij |αi1(X) = ·, · · · , αip(X) = ·

)
is continuously differentiable in the interior of

Sαi1 (X),··· ,αip (X).

Proof. See Appendix B.6. �

Proposition 3 shows that the joint choice probabilities rationalized byM3 are monotone

strictly increasing and continuously differentiable functions of the marginal choice probabil-

ities. Moreover, note that αi(x) ≡ FUi |X(u
∗
i (x)|x) = E(Yi|X = x) by monotone decreasing

pure strategy BNE. Therefore, αi(·) is observable. It follows that the restrictions (R1)-(R3)

are testable in principle. This is discussed further in the Conclusion.

9It also follows that the restrictions imposed by the set of structures with nonseparable private information and
exogenous payoff shiftersM′3 ≡ {S ∈ M1 : Assumption E holds} is given by Proposition 3.
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For completeness, we study the restrictions on distribution of observables imposed by

M4 ≡ {S ∈ M3 : Assumption I holds}. Special cases of this model have been considered

by several researchers using parametric or functional form restrictions. See, e.g. Brock

and Durlauf (2001), Seim (2006), Sweeting (2009), Bajari, Hong, Krainer, and Nekipelov

(2010), De Paula and Tang (2012) and Lewbel and Tang (2012). We first give a necessary and

sufficient condition for a structure inM3 to be observationally equivalent to a structure in

M4.

Lemma 6. For an arbitrary given structure S ∈ M3, there exists an observationally equivalent

structure S̃ ∈ M4 if and only if ∀x ∈ SX, ∀p = 2, · · · , I, and ∀ 1 ≤ i1 < · · · < ip ≤ I, we have

CUi1 ,··· ,Uip |X

(
αi1(x), · · · , αip(x)

∣∣x) =
p

∏
j=1

αij(x). (8)

Proof. See Appendix B.7. �

We note that as in Lemma 5, condition (8) involves only the copula but neither the

marginal distributions nor the payoffs of the structure S. We also note that condition (8) is

stronger than conditions (i)-(iii) of Lemma 5 together.

We can now characterize all the restrictions imposed on the distribution of observables

by modelM4. Because modelM2 does not impose any restriction by Proposition 1 and

Proposition 2, these restrictions are due to Assumptions E and I only. Essentially, the

following proposition translates the restrictions in Lemma 5 and Lemma 6 in terms of

observables. Since the restrictions in Lemma 5 are weaker than that in Lemma 6, as noted

above, only the latter binds.

Proposition 4. A conditional distribution FY|X(·|·) rationalized by a structure in M2 is also

rationalized by a structure inM4 if and only if Y1, · · · , YI are conditionally independent given X.

Proof. See Appendix B.8. �

As a matter of fact, a proof similar to that of Lemma 6 shows that condition (8) is also a

necessary and sufficient condition for a structure inM2 to be observationally equivalent to
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a structure with separable and mutually independent private information, i.e. to a structure

in M′
4 ≡ {S ∈ M2 : Assumption I holds}. So it follows that Proposition 4 holds with

M4 ≡ {S ∈ M2 : both Assumptions E and I hold} replaced byM′
4. We summarize such

discussion in the following corollary.

Corollary 1. ModelM4 imposes the same restrictions on distribution of players’ choices asM′
4,

and both models are observationally equivalent.

BecauseM4 (M′
4, exogeneity of the payoff shifters is redundant in terms of restrictions

on the observables as soon as mutual independence of private information is imposed. 10

4. NONPARAMETRIC IDENTIFICATION

In this section, we study the nonparametric identification of the baseline game-theoretical

modelM1, and its special casesM2,M3 andM4. As a preliminary to the identification of

M3, we also consider the identification ofM′
3 ≡ {S ∈ M1 : Assumption E holds} which

is the nonseparable extension ofM3.

4.1. Nonidentification ofM1 andM2.

Proposition 5. M1 andM2 are not identified nonparametrically.

The nonidentification ofM1 follows immediately from the observational equivalence be-

tween M1 and M2 established in Proposition 2. The nonidentification of M2 follows

from the fact that there always exist I single-agent binary threshold crossing models

matching the choice probabilities generated by any given structure in M2. Specifically,

for any S ≡ (π; FU|X(·|x)) ∈ M2 with cutoff values of (u∗1(x), · · · , u∗I (x)), we can let

π̃i(a−i, x, ui) = u∗i (x)− ui and F̃U|X(·|x) = FU|X(·|x). It is straightforward to see that the

constructed structure S̃ ≡ (π̃; F̃U|X) generates the same choice probabilities as the given

structure S. Thus,M2 is not identified.

10It also follows that the restrictions on distribution of observables imposed by the set of structures with
nonseparable and mutually independent private informationM′′4 ≡ {S ∈ M1 : Assumption I holds} is given
by Proposition 4.
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We now turn to the identification ofM′
3 andM3. Our identification analysis proceeds

in two steps: First, we establish the identification of the belief of the player at the margin,

i.e. σ∗−i(a−i|x, u∗i (x)), under weak conditions on the structures inM1. We then turn to the

identification of the payoff πi and the joint distribution FU|X of private information given

X under additional conditions for the nonseparable caseM′
3 and the separable caseM3,

respectively. The most important conditions are the exclusion restrictions.

4.2. Identification of σ∗−i(a−i|x, u∗i (x)). We make the following assumption where α(X) ≡

(α1(X), · · · , αI(X)).

Assumption RC–1 (Rank Condition). The support Sα(X) of α(X) is a convex and compact

subset of [0, 1]I with dim
(
Sα(X)

)
= I.

Because αi(x) = E(Yi|X = x), condition RC–1 is verifiable. It requires that the pay-

off shifters X have a rich support whose dimension is equal to the number of players.

This assumption is weak. For instance, when I = 2, this assumption is violated when

(E(Y1|X), E(Y2|X) lies on a line. Under Assumptions E and RC–1, the next proposition

establishes the identification of σ∗−i(a−i|x, u∗i (x)).

Lemma 7. Fix x ∈ SX. Suppose that a structure S ∈ M1 satisfies Assumptions E and RC–1,

then σ∗−i(·|x, u∗i (x)) is identified.

Proof. See Appendix B.9. �

Note that only the exogeneity assumption (with the rank condition) is used to identify

the belief. In particular, Assumptions S and I are not required for the identification of

the equilibrium belief σ∗−i. This contrasts with the literature, see e.g. Lewbel and Tang

(2012). For future use, we define the vector Σ∗−i(x) ∈ R2I−1
whose j–th argument equals to

σ∗−i

(
a(j)
−i |x, u∗i (x)

)
where a(j)

−i is the j–th element in A−i.

4.3. Identification ofM′
3. First, it should be noted that without further restrictions on the

structure, the payoffs are not identified by the proof of Lemma 5 for a structure inM3, i.e.
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we can show that any S ∈ M3 is observationally equivalent to another structure S̃ ∈ M3

corresponding to I single-agent binary threshold models. Thus, to identify the payoffs, we

impose some exclusion restrictions as in Aradillas-Lopez (2010), Bajari, Hong, Krainer, and

Nekipelov (2010), Tang (2010), Wan and Xu (2010), De Paula and Tang (2012) and Lewbel

and Tang (2012).

Assumption ER (Exclusion Restriction). Let X = (X1, · · · , XI). For all i, a−i, x and ui, we

have πi(a−i, x, ui) = πi(a−i, xi, ui). 11

Moreover, we make the following assumptions.

Assumption C. Fix x ∈ SX. The function πi(a−i, xi, ui) is continuous in ui for every i and a−i.

Assumption RC–2 (Rank Condition). Fix x ∈ SX. The matrix E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi, αi(X) = αi
]

has a rank that equals to 2I−1 − 1, for every i and αi ∈ Sαi(X)|Xi=xi
∩ (0, 1).

When πi is additively separable in ui, Assumption C is trivially satisfied. Assumption RC–

2 requires that conditional on Xi and αi(X), X−i varies sufficiently to cause enough variation

in σ∗−i(·|x, u∗i (x)). Such assumption is satisfied in the two-player case when players’ choices

are not degenerate.

Note that if the matrix E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi, αi(X) = αi
]

is full rank equal to 2I−1

for some αi ∈ (0, 1), then by the proofs of Proposition 6 one can verify that the struc-

tural function πi
(
a−i, xi, qi(αi)

)
= 0 for all a−i ∈ A−i and then, under Assumption M,

Sαi(X)|Xi=xi
= {αi}. This degenerated case corresponds to the special scenario that in

equilibrium there is no strategic effects from player i’s rivals when Xi = xi. Therefore, if

πi
(
a−i, xi, qi(αi)

)
6= πi

(
a′−i, xi, qi(αi)

)
for some a−i, a−i ∈ A−i, then 2I−1 − 1 is the largest

possible rank that the matrix E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi, αi(X) = αi
]

could have.

Let qi(·) ≡ F−1
Ui

(·) be the quantile function of the marginal distribution of Ui.

Proposition 6. Fix xi ∈ SXi . Let S ∈ M′
3. Suppose that assumptions RC–1, ER, C and RC–2

hold, then for every αi ∈ Sαi(X)|Xi=xi
∩ (0, 1), πi

(
·, xi, qi(αi)

)
is identified up to to the scale. In

11As a matter of fact, Xis can have some common variables. To simplify, we assume that Xis partition X.
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addition, if there exists x′ = (xi, x′−i) ∈ SX such that αi(x′) 6= αi and (αi, α−i(x′)) ∈ Sα(X), then

the sign of πi
(
·, xi, qi(αi)

)
is also identified.

Proof. See Appendix B.11. �

Proposition 6 shows that the players’ nonseparable payoffs are identified up to scale as

well as up to the marginal distributions of players’ private information, on an appropriate

domain which is essentially the support of the FUi -quantile associated with E(Yi|X) con-

trolling for Xi = xi. The more variations in E(Yi|X) when X−i varies, the larger will be this

domain. This domain excludes the boundaries qi(0) and qi(1) for technical reasons. For

the purpose of generality, in Proposition 6, we allow a “zero” scale, as well as positive and

negative values. “Zero” scale could occur only if the support Sαi(X)|Xi=xi
is a singleton.

Now we turn to the identification of FU . Knowledge of FU is equivalent to the knowledge

of its copula CU and its marginals FUi , i = 1, · · · , I. The copula CU is identified on the

support Sα(X) of α(X) due to

CU(α1(x), · · · , αI(x)) = FU(u∗1(x), · · · , u∗I (x)) = P(Y1 = · · · = YI = 1|X = x) (9)

for every x ∈ SX. On the other hand, the marginal distributions are not identified. This is

expected in view of Matzkin (2003) results for nonseparable models.

The discussion above shows that, for normalization purposes, we are free to choose the

scale of the payoffs and the marginal distributions of private information FUi . One straight-

forward normalization is given by normalizing the scale of the payoffs and the marginal

distributions of private information FUi . Under such a normalization, πi(a−i, xi, ·) is then

identified on the domain qi

(
Sαi(X)|Xi=xi

∩ (0, 1)
)

for every a−i ∈ A−i by Proposition 6.

4.4. Identification ofM3. Next, we consider the case where additive separability of private

information in payoffs is imposed in M′
3, i.e. model M3. With additive separability

of private information in the payoffs, we obtain a stronger identification result under

weaker rank condition in M3 than M′
3. We give such a rank condition as follows. Let

Σ∗−i(X) ≡ Σ∗−i(X)−E
[
Σ∗−i(X)|Xi, αi(X)

]
.
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Assumption RC–3 (Rank Condition). The matrix E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi

]
has a rank of

2I−1 − 2 for all i and a fixed x ∈ SX such that
(

α1(x), · · · , αI(x)
)
∈ (0, 1)I .

Assumption RC–3 requires that conditional on Xi, X−i varies sufficiently to cause

enough variation in the de-meaned belief of the player at the margin σ∗−i(·|x, u∗i (x)) ≡

σ∗−i(·|x, u∗i (x))−E
[
σ∗−i(·|X, u∗i (X))|Xi = xi, αi(X) = αi(x)

]
. Similarly, a full rank (2I−1 − 1)

of the matrix E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi

]
only occurs when there is no strategic effects on

i with Xi = xi. Assumption RC–3 is trivially satisfied in the two-player case when players’

choices are not degenerate. Such assumption is, in general, weaker than Assumption RC–2

because Assumption RC–2 requires that the rank condition holds for all αi ∈ Sαi(X)|Xi=xi
.

The following proposition gives the identification result of players’ payoffs in modelM3.

Proposition 7. Fix xi ∈ SXi such that αi(x) ∈ (0, 1) for some x ∈ SX|Xi=xi
. Let S ∈ M3.

Suppose that Assumptions RC–1, ER, and RC–3 hold, then hi
(
·, xi
)
≡ πi(·, xi)− πi(a0

−i, xi) is

identified up to scale. In addition, if there exists x, x′ ∈ SX|Xi=xi
such that αi(x) 6= αi(x′) and

(αi(x), α−i(x′)) ∈ Sα(X), then the sign of hi
(
·, xi
)

is also identified.

Proof. See Appendix B.12. �

Proposition 7 shows that the players’ additively separable payoffs are identified up to a

location and a scale on the whole support of the private information.12 Such identification

result is stronger than the one in Proposition 6 due to the additive separability of private

information in payoffs.

We then turn to the identification of the joint distribution of private information FU .

Identification of FU is equivalent to identify both its copula CU and its marginals FUi ,

i = 1, · · · , I. As shown in Section 4.3, CU is identified on the support Sα(X) of α(X) by eq.

(9). In addition, the marginals FUi , i = 1, · · · , I, are identified up to a location and a scale.

12Based on Proposition 7, Lemma 10 in Appendix B.14 provides a necessary and sufficient condition for two
structures inM3 to be observationally equivalent.
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To see this, we first look at the following equilibrium condition

u∗i (x) = ∑
a−i∈A−i

πi(a−i, xi)× σ∗−i(a−i|x, u∗i (x)).

It implies that u∗i (x) is identified up to a location and scale by Proposition 7 since the belief

of the player at the margin σ∗−i(·|x, u∗i (x)) is identified by Lemma 7. Consequently, the

marginal quantile function F−1
Ui

is identified up to a location and scale on the support Sαi(X)

of αi(X) due to F−1
Ui

(E(Yi|X = x)) = u∗i (x).

The discussion above shows that, for normalization purposes, we are free to choose a

location and a scale for each player. One convenient normalization is to normalize the scale

of payoffs and one quantile of the marginal distribution FUi of private information. Such a

normalization pins down both the location and scale. By Proposition 7, the players’ payoffs

are then identified under this normalization. Our discussion in the above paragraph also

shows that the marginal distributions of private information are identified on an appropriate

domain in this case.

Corollary 2. Fix xi ∈ SXi such that Sαi(X)|Xi=xi
is not a singleton. Let S ∈ M3. Suppose hi(·, xi)

is identified up to scale and the sign of hi(·, xi) is also identified under the conditions in Proposition 7.

Let further median(U) = 0 ∈ Sαi(X)|X=xi
and ‖πi(·, xi)‖ = 1 for all xi ∈ SXi . Then πi(·, xi) is

identified.

Proof. See Appendix B.13. �

Remark 1. We can have an alternative strategy to identify players’ payoffs in modelM3. It is

based on the following single–index structure,

E(Yi|Xi = xi, Σ∗−i(X) = Σ∗−i(x))

= FUi

πi
(
a0
−i, xi

)
+ ∑

a−i∈A/{a0
−i}

hi(a−i, xi)σ
∗
−i
(
a−i|x, u∗i (x)

) (10)
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where the belief vector of the player at the margin Σ∗−i(x) is identified for any x ∈ SX due to

Lemma 7. We can identify hi(a−i, xi) ≡ πi(a−i, xi)− πi(a0
−i, xi) up to scale by differentiating

eq. (10) with respect to σ∗−i(a−i|x, u∗i (x)) for any a−i ∈ A−i. Thus, players’ payoffs πi(·, xi) are

identified up to location and scale. This strategy, however, involves a support condition (on Σ∗−i(X)

given Xi = xi), which is stronger than the one used in the strategy above.

5. CONCLUSION

This paper addresses the rationalization and identification of discrete games with corre-

lated private private information in a fully nonparametric way. We show that our baseline

game-theoretical model does not impose any restriction on observables. This implies that

binary bayesian games are not testable in view of players’ choices only. We also characterize

all the restrictions on players’ choices imposed by three assumptions frequently made in

the empirical analysis of discrete games. We then exploit exclusion restrictions to identify

our structural model nonparametrically in both nonseparable and separable cases. These

restrictions take the form of excluding part of a player’s payoff shifters from all other

players’ payoffs as frequently assumed in the empirical discrete game literature.

We require that the same monotone pure strategy BNE is played in the DGP for a given

x. The nonparametric analysis relaxing such a requirement clearly needs to be developed.

In particular, all of our rationalization and identification results will be weakened in that

situation. In particular,M1 andM2 still impose no restrictions on observables whether

or not a single monotone pure strategy BNE is played. On the other hand,M3 andM4

will impose weaker restrictions than those in Proposition 3 and Proposition 4, respectively.

Location/scale identification of these two models, as established in Proposition 7, will

be lost. Thus, point identification of the primitives would require additional identifying

assumptions. Alternatively, one could follow the set-identification approach initiated by

Tamer (2003) in the presence of multiple BNE.

24



A second line of research, which needs to be developed, concerns model testing. Our

Proposition 3 and Proposition 4 become especially useful as they characterize all the re-

strictions in terms of observables imposed byM3 andM4. Thus such restrictions are in

principle testable. In particular, some tests can be relatively easy to develop as they only

involve some nonparametric regressions. For instance, the restriction given in Proposition 4

can be tested by using conditional independence tests developed in statistics and econo-

metrics (see, e.g. Su and White (2007) and Su and White (2008)). It is also worthnoting that

such tests do not rely on identification of the model and consequently on the assumptions

used to identify the primitives.

Lastly, a third line of research deals with the nonparametric estimation of the various

models. In a semiparametric setup, Liu and Xu (2012) propose an estimation procedure for

our modelM3 with linear payoff, and establish the root-N consistency of the linear payoff

coefficients. A fully nonparametric estimation, however, deserves future investigation. A

strategy could rely on the identification results and propose a sample-analog type of estima-

tors for the players’ payoffs and the joint distribution of private information. Establishing

the asymptotic properties of such an estimation procedure is left for future research. The

main difficulty relies on the generated covariates, namely the belief of the player at the

margin which appears in the expected payoff. Such a problem could be addressed by using

the most recent literature on nonparametric regression with nonparametrically generated

covariates (see, e.g., Mammen, Rothe, and Schienle (2012)).
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APPENDIX A. PROOFS OF RESULTS IN SECTION 2

A.1. Proof of Lemma 1. First, Assumptions G1–G6 of Reny (2011) are satisfied in our discrete

game under Assumption R. Moreover, by Assumption M, when other players employ monotone

decreasing pure strategies, player i’s best response is also a monotone decreasing pure strategy,

which is unique. By Reny (2011, Theorem 4.1), the conclusion follows. �

A.2. Existence of monotone pure strategy BNEs under primitive conditions.

Definition 2. a set A ⊆ Rd is upper if and only if its indicator function is non–decreasing, i.e., for any

x, y ∈ Rd, x ∈ A and x ≤ y imply y ∈ A, where x ≤ y means xi ≤ yi for i = 1, · · · , d.

Assumption A (Positive regression dependence). For any x ∈ SX and any upper set A ⊆ RI−1, the

conditional probability P (U−i ∈ A|X = x, Ui = ui) is non–decreasing in ui ∈ SUi |X=x.

Assumption B (Strategic complement). For any x ∈ SX and ui ∈ SUi |X=x, suppose a−i ≤ a′−i, then

πi(a−i, x, ui) ≤ πi(a′−i, x, ui).

Assumption C (Non-increasing Payoffs). ∀ i = 1, · · · , I and ∀ (a−i, x) ∈ A−i ×SX , πi(a−i, x, ·) are

non-increasing functions in ui ∈ SUi |X=x.

Lemma 8. Suppose that assumptions R, A, B and C hold. For any x ∈ SX, there exists a monotone

decreasing pure strategy BNE.

Proof. By Lemma 1, it suffices to show that Assumption M holds. Fix x ∈ SX. Given an arbitrary

monotone decreasing pure strategy profile: δi(x, ui) = 1[ui ≤ ui(x)] for i = 1, · · · , I, where

ui(x) ∈ SUi |X=x. By assumptions A and B, and Lehmann (1955), for any ui < u′i in SUi |X=x, we

have

Eδ

[
πi(Y−i, X, ui)|X = x, Ui = u′i

]
≤ Eδ [πi(Y−i, X, ui)|X = x, Ui = ui] .

Further, by assumption C,

Eδ
[
πi(Y−i, X, u′i)|X = x, Ui = u′i

]
≤ Eδ

[
πi(Y−i, X, ui)|X = x, Ui = u′i

]
.

Thus, Eδ [πi(Y−i, X, Ui)|X = x, Ui = ui] is a non–increasing function of ui. �
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A.3. Proof of Lemma 2. Fix X = x. By Assumption S, there is Eδ∗
[
πi(Y−i, X, Ui)

∣∣X = x, Ui = ui
]
=

Eδ∗
[
πi(Y−i, X)

∣∣X = x, Ui = ui
]
− ui. Because Eδ∗

[
πi(Y−i, X)

∣∣X = x, Ui = ui
]

is a linear combina-

tion of σ∗−i(a−i|x, ui) for all a−i ∈ A−i, which are continuous in ui under Assumption R, then

Eδ∗
[
πi(Y−i, X, Ui)

∣∣X = x, Ui = ui
]

is a continuous and monotone decreasing function in ui under

Assumption M. Hence, the cutoff value u∗i (x) defining player i’s equilibrium strategy satisfies: if

ui(x) < u∗i (x) < ui(x), we have

Eδ∗
[
πi(Y−i, X)

∣∣X = x, Ui = u∗i (x)
]
− u∗i (x) = 0,

which implies that: conditional on ui(X) < u∗i (X) < ui(X), there is

Yi = 1 [Ui ≤ u∗i (X)] = 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i
(
a−i|X, u∗i (X)

)]
.

If u∗i (x) = ui(x), then Eδ∗
[
πi(Y−i, X)

∣∣X = x, Ui = ui(x)
]
− ui(x) ≥ 0, which implies that: condi-

tional on u∗i (x) = ui(x), there is

Yi = 1 [Ui ≤ ui(X)] ≤ 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i
(
a−i|X, ui(X)

)]
.

Because 1 [Ui ≤ ui(X)] = 1 a.s., thus

Yi = 1 [Ui ≤ ui(X)] = 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i
(
a−i|X, ui(X)

)]
a.s..

Similar arguments hold for the case u∗i (x) = ui(x). �

APPENDIX B. PROOFS OF RESULTS IN SECTION 3

B.1. Proof of Proposition 1. Fix x ∈ SX . First, we assume P(Y = a|X = x) > 0 for all a ∈ A. Now

we construct a structure inM1 to rationalize FY|X(·|x). Let πi(a−i, x, ui) = E(Yi|X = x)− ui for

i = 1, · · · , I. Note that there is no strategic effect by construction and Assumption M is satisfied.

Now we construct FU|X(·|x). Let FUi |X(·|x) be uniformly distributed on [0, 1]. So it suffices to

construct the copula function CU|X(·|x). Let CU|X(α1, · · · , αI |x) = 0 if αi = 0 for some i. Then only

restriction left for constructing such a copula is: on the support {E(Y1|X = x), 1}× · · · × {E(YI |X =

x), 1}, let CU|X(α1, · · · , αI |x) = E(∏
p
j=1 Yij |X = x) where i1, · · · , ip are all the indexes such that

αij = E(Yij |X = x). On this sub–support, it is straightforward that CU|X(·|x) is monotone increasing
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in each index by the fact that P(Y = a|X = x) > 0 for all a ∈ A. Thus it is straightforward that we

can extend CU|X(·|x) to the whole support [0, 1]I such that CU|X(·|x) is monotone increasing and

smooth. It can be shown that the given conditional distribution of Y given X = x can be rationalized

by this constructed structure in M1: P(Yi1 = 1, · · · , Yip = 1|X = x) = CUi1
,··· ,Uip |X(E(Yi1 |X =

x), · · · , E(Yip |X = x)) for any subset index {i1, · · · , ip}.

When P(Y = a|X = x) = 0 for some a’s in A. By the condition in Proposition 1, the conditional

distribution of Y given X = x is degenerated in some indexes. W.l.o.g., let {1, · · · , k} be set of indexes

such that P(Yi = 1|X = x) = 0 or 1; and {k + 1, · · · , I} satisfying 0 < P(Yi = 1|X = x) < 1. Then

let πi(a−i, x, ui) = E(Yi|X = x)− ui for i = 1, · · · , I. For player i = k + 1, · · · , I, we can construct

a copula function CUk+1,··· ,UI |X(·|x) as described above such that CUk+1,··· ,UI |X(·|x) is monotone

increasing and smooth. Similarly, the constructed structure rationalizes the given conditional

distribution of Y given X = x. �

B.2. Rationalizing All Probability Distributions. Suppose we replace Assumption R with the

following conditions in Reny (2011): For every x ∈ SX ,

G.2. The distribution FUi |X(·|x) on SUi |X=x is atomless.

G.3. There is a countable subset S 0
Ui |X=x of SUi |X=x such that every set in SUi |X=x assigned

positive probability by FUi |X(·|x) contains two points between which lies a point in S 0
Ui |X=x.

Note that it is straightforward that Assumptions G.1 and G.4 through G.6 in Reny (2011) are all

satisfied in our discrete game because the action space A is finite and the conditional distribution

of U given X = x has a hypercube support in RI . Thus, the conclusion in Lemma 1 still holds (i.e.,

existence of a monotone pure strategy BNE) under Assumptions G.2, G.3 and M. Moreover, if we

define

M′
1 ≡ {S : G.2, G.3 and M hold and a single monotone decreasing pure strategy BNE is played}

Then we can show the following result:

Lemma 9. For any x ∈ SX , FY|X(·|x) can be rationalized by a structure S ≡ [π1, · · · , πI ; FU|X ] ∈ M′
1.

Proof. Fix x ∈ SX . Now we construct a structure inM′
1 to rationalize FY|X(·|x). Let πi(a−i, x, ui) =

αi(x)− ui for i = 1, · · · , I. Note that there is no strategic effect by construction and Assumption M

is satisfied. Now we construct FU|X(·|x). Let [0, 1]I be the support of the distribution and partition
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it into 2I disjoint events:
⊗I

i=1{[0, αi(x)), [αi(x), 1]} 13. For each event Bj, (j = 1, · · · , 2I), we define

a conditional distribution FU|X=x,U∈Bj
as a uniform distribution on Bj, where Bj is the j–th event

in the partition of the support. Moreover, let P(U ∈ Bj|X = x) = P(Y = a(j)|X = x) where

a(j) ∈ A and satisfies ai(j) = 0 if the i–th argument of event Bj is [αi(x), 1], and ai(j) = 1 if the

i–th argument is [0, αi(x)). With such construction, the marginal distribution of Ui given X = x is

a uniform distribution on [0, 1] which satisfies Assumptions G.2 and G.3. Thus, the constructed

structure S ≡ [π1, · · · , πI ; FU|X ] ∈ M′
1 and it rationalizes FY|X(·|x) by construction. �

B.3. Proof of Lemma 3. Fix x ∈ SX. For any structure S ∈ M1, let F̃U|X(·|x) = FU|X(·|x) and

π̃i(a−i, x, ui) = u∗i (x)− ui where
(
u∗1(x), . . . , u∗I (x)

)
is the equilibrium cut-off value profile under

structure S. It is easy to see that S̃ ≡ [π̃; F̃U|X ] ∈ M2, and S̃ is observationally equivalent to the

given structure S. �

B.4. Proof of Lemma 4. The only if part is straightforward: Note that αi(x) = E(Yi|X = x) =

P(Yi = 1|X = x). Thus, given two observationally equivalent structures S ≡ [π, FU|X ] and

S̃ ≡ [π̃; F̃U|X ] inM2, condition (i) requires that both structures lead to the same value for P(Yi =

1|X = x), while condition (ii) requires to have the same value for P(Yi1 = 1, · · · , Yip = 1|X = x).

For the if part, it suffices to verify that for every x ∈ SX , the conditional equilibrium choice prob-

ability P (Y = a|X = x) induced by the structure S can also be generated by another structure S̃ that

satisfies the two conditions in Lemma 4. We verify this for a = (1, · · · , 1) only. By the definition of

monotone pure strategy BNE, we have Pδ̃∗ (Y1 = · · · = YI = 1|X = x) = F̃U|X
(
ũ∗1(x), · · · , ũ∗I (x)

∣∣x).
By condition (i), ũ∗i (x) = F̃−1

Ui |X
(
αi(x)

∣∣x). Thus

Pδ̃∗ (Y1 = · · · = YI = 1|X = x) = F̃U|X(F̃−1
U1|X

(α̃1(x)|x), · · · , F̃−1
UI |X

(α̃I(x)|x)|x)

= C̃U|X
(
α̃1(x), · · · , α̃I(x)

∣∣x)
= CU|X

(
α1(x), · · · , αI(x)

∣∣x)
= Pδ∗ (Y1 = · · · = YI = 1|X = x)

where the third equality follows from (ii). �

13To have meaningful partition, it is understood that {[0, αi(x)), [αi(x), 1]} becomes {{0}, (0, 1]} when αi(x) =
0.
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B.5. Proof of Lemma 5. We first show the "only if" part. Suppose that the observationally equivalent

structure is S̃ = [π̃; F̃U|X ] ∈ M3 . Then F̃U|X = F̃U . Condition (ii) of Lemma 4 implies that

CUi1
,··· ,Uip |X

(
αi1(x), · · · , αip(x)

∣∣x) = C̃Ui1
,··· ,Uip

(
αi1(x), · · · , αip(x)

)
(11)

for every x ∈ SX, every p = 2, · · · , I and every ijs such that 1 ≤ i1 < · · · < ip ≤ I. Consequently,

we have

mp(αi1(x), · · · , αip(x))

≡ E
[
CUi1

,··· ,Uip |X

(
αi1(X), · · · αip(X)

∣∣X) |αi1(X) = αi1(x), · · · αip(X) = αip(x)
]

= E
[
C̃Ui1

,··· ,Uip

(
αi1(X), · · · , αip(X)

)∣∣αi1(X) = αi1(x), · · · , αip(X) = αip(x)
]

= C̃Ui1
,··· ,Uip

(
αi1(x), · · · , αip(x)

)
(12)

for every x ∈ SX . Condition (i) is then established by eqs. (11) and (12).

Notice that eq. (12) also implies that mp(αi1 , · · · , αip) = C̃Ui1
,··· ,Uip

(
αi1 , · · · , αip

)
for every (αi1 , · · · , αip)

in the support of (αi1(X), · · · , αip(X)). In addition, C̃Ui1
,··· ,Uip

is monotone strictly increasing and

continuously differentiable by Assumption R. Thus, condition (ii) holds due to the strict monotonicity

of C̃Ui1
,··· ,Uip

, and condition (iii) can be obtained by the continuous differentiability of C̃Ui1
,··· ,Uip

.

For the if part, our proof is constructive. For any x ∈ SX, let π̃i(a−i, x, ui) = αi(x)− ui for i =

1, · · · , I, where αi(x) = FUi |X(u
∗
i (x)|x). We further construct F̃U . Let F̃Ui be uniformly distributed

on [0, 1]; And for all 1 ≤ i1 < · · · < ip ≤ I, (αi1 , · · · , αip) ∈ Sαi1
(X),··· ,αip (X) and x ∈ SX, define

F̃Ui1
,··· ,Uip

(·, · · · , ·) as follows

F̃Ui1
,··· ,Uip

(αi1 , · · · , αip) = E[CUi1
,··· ,Uip |X

(
αi1(X), · · · , αip(X)|X

)∣∣αi1(X) = αi1 , · · · , αip(X) = αip

]
,

which is monotone strictly increasing on Sαi1
(X),··· ,αip (X) by condition (ii) and continuously differen-

tiable in the interior of Sαi1
(X),··· ,αip (X) by condition (iii). Thus we can extend the distribution F̃U(·)

to the whole support [0, 1]I such that (1) F̃U(·) is monotone strictly increasing and continuously

differentiable on [0, 1]I ; (2) F̃U(0, · · · , 0) = 0 and F̃U(1, · · · , 1) = 1. Thus F̃U(·) is a proper distribu-

tion function and yields a positive and continuous conditional Radon–Nikodym density on [0, 1]I .

By construction, [π̃; F̃U(·)] ∈ M3, and by Lemma 4 it is observationally equivalent to the structure

S, because F̃Ui (αi(x)) = αi(x) = FUi |X(u
∗
i (x)|x) where (α1(x), · · · , αI(x)) is an equilibrium cutoff
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value profile under constructed structure [π̃; F̃U(·)], and

CUi1
,··· ,Uip |X(αi1(x), · · · , αip(x)|x) = F̃Ui1

,··· ,Uip
(αi1(x), · · · , αip(x))

which is implied by condition (i). This completes the proof. �

B.6. Proof of Proposition 3.

Proof. Note that CUi1
,··· ,Uip |X(αi1(x), · · · , αip(x)|x) = FUi1

,··· ,Uip |X

(
u∗i1(x), · · · , u∗ip

(x)|x
)
= E

(
∏

p
j=1 Yij

∣∣∣X = x
)

.

In addition,

mp(αi1(x), · · · , αip(x))

= E
[
CUi1

,··· ,Uip |X

(
αi1(X), · · · αip(X)

∣∣X) |αi1(X) = αi1(x), · · · αip(X) = αip(x)
]

= E

[
E

(
p

∏
j=1

Yij |X
)
|αi1(X) = αi1(x), · · · αip(X) = αip(x)

]

= E

[
p

∏
j=1

Yij |αi1(X) = αi1(x), · · · αip(X) = αip(x)

]

Thus, conditions (R1)-(R3) follow from (i)-(iii) in Lemma 5. �

B.7. Proof of Lemma 6.

Proof. The only if part follows directly from Assumption I. It suffices to show the if part.

We use a constructive approach to show the if part. Fix an arbitrary structure [π; FU|X ] ∈ M3 for

which eq. (8) is satisfied. Fix arbitrarily x ∈ SX . Let F̃Ui |X(·|x) = FUi (·) and F̃U|X(·|x) = ∏I
i=1 FUi (·).

Moreover, for any x ∈ SX , let π̃i(a−i, x, ui) = u∗i (x)− ui where (u∗1(x), . . . , u∗I (x)) is the equilibrium

cut-off value profile under the given structure [π; FU|X ] and X = x. By construction, [π̃; F̃U|X ]

satisfies Assumptions M, S, E, and I. Regarding to Assumption R, it suffices to show that FUi (·) is

absolutely continuous w.r.t. Lebesgue measure and has a continuous conditional Radon–Nikodym

density fUi (·), which is true due to the fact [π; FU|X ] ∈ M3. Hence, [π̃; F̃U|X ] ∈ M4.

By construction, it is straightforward to show that the conditions (i) and (ii) in Lemma 4 are satis-

fied by the constructed structure [π̃; F̃U|X ] and the given structure S, which ensures the observational

equivalence between the two structures. �
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B.8. Proof of Proposition 4.

Proof. Note that the condition given in Lemma 6 is stronger than those in Lemma 5, so the necessary

and sufficient condition for a structure in M2 to be observationally equivalent to a structure in

M4 is the same as the one in Lemma 6. In addition, we have CUi1
,··· ,Uip |X

(
αi1(x), · · · , αip(x)

∣∣x) =

FUi1
,··· ,Uip |X

(
u∗i1(x), · · · , u∗ip

(x)
∣∣x) = E

(
∏

p
j=1 Yij

∣∣X = x
)

. Thus condition (8) becomes

E

(
p

∏
j=1

Yij

∣∣X = x

)
=

p

∏
j=1

E(Yij |X = x)

for p = 2, · · · , I, which implies that Y1, · · · , YI are conditionally independent given X. �

B.9. Proof of Lemma 7.

Proof. Fix X = x. For notational brevity, we only show this lemma for I = 3. It is straightforward to

generalize the following arguments to more general case with I > 3.

For i = 1, 2, 3, j 6= i, k 6= i and j < k, let ξi,j(x) ≡ P(Uj ≤ u∗j (x)|X = x, Ui = u∗i (x)) and ξi,jk(x) ≡

P(Uj ≤ u∗j (x), Uk ≤ u∗k (x)|X = x, Ui = u∗i (x)). Note that for all a−i ∈ A−i, σ∗−i(a−i|x, u∗i (x)) can be

expressed in terms of ξi,j(x), ξi,k(x) and ξi,jk(x). For instance,

σ∗−1(a2 = 1, a3 = 1|x, u∗1(x)) = P
(
U2 ≤ u∗2(X); U3 ≤ u∗3(X)|X = x, U1 = u∗1(x)

)
= ξ1,23(x),

and

σ∗−1(a2 = 1, a3 = 0|x, u∗1(x)) = ξ1,2(x)− ξ1,23(x).

Thus, it suffices to show that all of ξi,j(·), ξi,k(·) and ξi,jk(·) are identified for all i, j, k such that j, k 6= i

and j < k.

Let αi(x) ≡ FUi |X(u
∗
i (x)|x) and α(x) ≡ (α1(x), · · · , αI(x)) ∈ RI . We then get αi(x) = E(Yi|X =

x) in equilibrium. Thus, u∗i (x) = F−1
Ui |X

(
αi(x)|x

)
= F−1

Ui

(
αi(x)

)
, where the last step comes from

Assumption E. Thus, in a monotone pure–strategy BNE,

E(YiYj|α(X) = α) = P
(
Ui ≤ u∗i (X); Uj ≤ u∗j (X)|α(X) = α

)
= P

(
Ui ≤ F−1

Ui

(
αi
)
; Uj ≤ F−1

Uj

(
αj
)∣∣∣α(X) = α

)
= P

(
Ui ≤ F−1

Ui

(
αi
)
; Uj ≤ F−1

Uj

(
αj
))

.
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Hence, E(YiYj|α(X) = α) is differentiable in α ∈ Sα(X) since P
(

Ui ≤ F−1
Ui

(
αi
)
; Uj ≤ F−1

Uj

(
αj
))

is

differentiable in α under Assumption R.

∂E(YiYj|α(X) = α)

∂αi

∣∣∣
α=α(x)

=
∂P
(

Ui ≤ F−1
Ui

(αi); Uj ≤ F−1
Uj

(αj)
)

∂αi

∣∣∣
α=α(x)

=
∂P
(

FUi (Ui) ≤ αi; FUj(Uj) ≤ αj

)
∂αi

∣∣∣
α=α(x)

=
∂
∫ αi

0

∫ αj
0 f (µ, ν)dνdµ

∂αi

∣∣∣
α=α(x)

,

where f (µ, ν) is the joint density function of
(

FUi (Ui), FUj(Uj)
)
. Then

∂E(YiYj|α(X) = α)

∂αi

∣∣∣
α=α(x)

=
∫ αj(x)

0
f (αi(x), ν)dν

=
∫ 1

0
f (αi(x), ν)dν×

∫ αj(x)

0

f (αi(x), ν)∫ 1
0 f (αi(x), ν)dν

dν.

Note that
∫ 1

0 f (αi(x), ν)dν is the marginal density of FUi (Ui) evaluated at αi(x), which equals to one

under Assumption R because FUi (Ui) is uniformly distributed on [0, 1], and f (αi(x), ν)
/∫ 1

0 f (αi(x), ν)dν

is the conditional density function of FUj(Uj) at ν given FUi (Ui) = αi(x). Therefore,

∂E(YiYj|α(X) = α)

∂αi

∣∣∣
α=α(x)

=
∫ αj(x)

0

f (αi(x), ν)∫ 1
0 f (αi(x), ν)dν

dν = P
(

FUj(Uj) ≤ αj(x)
∣∣FUi (Ui) = αi(x)

)
= P

(
Uj ≤ F−1

Uj
(αj(x))

∣∣Ui = F−1
Ui

(αi(x))
)
= P

(
Uj ≤ u∗j (x)

∣∣Ui = u∗i (x)
)

,

where the last step uses the fact that u∗i (x) = F−1
Ui

(
αi(x)

)
. Hence, ξi,j(·) is identified. ξi,k(·) can be

identified in the same way by replacing every subscript j with k. Similarly, we can obtain

∂E(YiYjYk|α(X) = α)

∂αi

∣∣∣
α=α(x)

= P
(

Uj ≤ u∗j (x); Uk ≤ u∗k (x)
∣∣Ui = u∗i (x)

)
,

which identifies ξi,jk(·). The desired conclusion therefore follows. �

B.10. Model restrictions imposed by Assumption E. LetM5 ≡ {S ∈ M3 : Assumptions RC–1 and ER hold}.

Proposition 8. For an arbitrary given structure S ∈ M3, suppose Assumption RC–1 holds. Then, there

exists an observationally equivalent structure S̃ ∈ M5 if and only if ∀w ∈ SW , there exists a (conditional)
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probability distribution Po and a profile of functions b(·) ≡ (b1(·), · · · , bI(·)), where bi : SZi |W=w → R2I−1

and both Po and b(·) could depend on w, such that

(i) Let Qo
i (·) be the marginal quantile function of the i–th argument under the probability distribution

Po. Then ∀x ∈ SX|W=w, there is

2I−1

∑
k=1

bik(zi)× σ∗−i(ak−1
−i |x, u∗i (x)) = Qo

i (αi(x)).

(ii) The c.d.f. of Po is continuously differentiable and monotone increasing in all arguments. Moreover,

∀p = 2, · · · , I, ∀ 1 ≤ i1 < · · · < ip ≤ I, and ∀(αi1 , · · · , αip) ∈ Sαi1
(X),··· ,αip (X)|W=w, there is

Co
i1,··· ,ip

(
αi1 , · · · , αip

)
= CUi1

,··· ,Uip |W

(
αi1 , · · · , αip

∣∣w) ,

where Co
i1,··· ,ip

be the copula function of the i1–th, · · · , ip–th arguments under Po.

(iii) ∀α ∈ [0, 1]I , let δj(·, αj) = 1(· ≤ Qo
j (αj)) for all j = 1, · · · , I. Let δ−i = (δ1, · · · , δi−1, δi+1, · · · , δI).

Then for i = 1, · · · , I, the function

2I−1

∑
k=1

bik(zi)×Po(δ−i(U−i, α−i) = ak−1
−i |Ui = ui

)
− ui

is a monotone decreasing function in ui.

Proof. For the only if part. Suppose [π; FU|W ] ∈ M3 and [π̃; F̃U|W ] ∈ M5 are observationally

equivalent. Fix W = w. Let bik(zi) = π̃i(ak
−i, w, zi) and Po be the conditional distribution of U given

W = w under F̃U|W(·|w). Because of Lemma 2, ∀x ∈ SX|W=w

∑
a−i∈A

π̃i(a−i, w, zi)σ̃
∗
−i
(
a−i|x, u∗i (x))

)
= F̃−1

Ui |W
(α̃i(x)|w).

By Lemma 7 and the observational equivalence between [π; FU|W ] and [π̃; F̃U|W ], σ̃∗−i
(
a−i|x, u∗i (x))

)
=

σ∗−i
(
a−i|x, u∗i (x))

)
and α̃i(x) = αi(x). Thus

∑
a−i∈A

bi,k(zi)σ
∗
−i
(
a−i|x, u∗i (x))

)
= F̃−1

Ui |W
(αi(x)|w).

By construction, F̃−1
Ui |W

(αi(x)|w) = Qo
i (αi(x)). Thus condition (i) holds. Moreover, it is straightfor-

ward that condition (ii) and (iii) hold.
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For the if part. We construct the structure S̃ ∈ M5 as follows: under assumptions S and

E, let π̃i(·, w, zi) = bi(zi) for all zi, and F̃U|X(·|x) = F̃U|W(·|w), which is derived from Po. By

construction, it is straightforward that condition S, I and E are satisfied. Assumption R and MD are

also satisfied by conditions (ii) and (iii). Thus, it is straightforward that δ̃∗ = (δ̃∗1 , · · · , δ̃∗I ), where

δ̃∗j = 1(uj ≤ Qo
j (αj(x))), is a BNE in the constructed structure, which gives us observationally

equivalent under the second part of condition (ii). �

Remark 2. Condition (i) in Proposition 8 implies that

a. Condition on W = w and Zi = zi, σ∗−i
(
a0
−i|X, u∗i (X)

)
, · · · , σ∗−i

(
a2I−1−1
−i |X, u∗i (X)

)
and Qo

i (αi(X))

are linearly dependent, especially, αi(X) is a linear–index function of σ∗−i
(
a0
−i|X, u∗i (X)

)
, · · · , σ∗−i

(
a2I−1−1
−i |X, u∗i (X)

)
.

b. Condition on W = w, Zi = zi and αi(X) = αi ∈ Sαi(X)|W=w, σ∗−i
(
a1
−i|X, u∗i (X)

)
, · · · ,

σ∗−i

(
a2I−1−1
−i |X, u∗i (X)

)
are linearly dependent, where σ∗−i(a−i|X, u∗i (X)) = σ∗−i(a−i|X, u∗i (X))−

E
[
σ∗−i(a−i|X, u∗i (X))|W = w, Zi = zi, αi(X) = αi

]
.

B.11. Proof of Proposition 6.

Proof. When αi(x) ∈ (0, 1), because Eδ∗
[
πi(Y−i, Xi, Ui)

∣∣X = x, Ui = ui
]

is a continuous and mono-

tone function in ui by Assumptions R, M, and C, we then have

0 = Eδ∗
[
πi(Y−i, Xi, Ui)

∣∣X = x, Ui = u∗i (x)
]
= ∑

a−i

πi(a−i, xi, u∗i (x))× σ∗i (a−i|x, u∗i (x)).

Since u∗i (x) = qi(αi(x)), then we have

∑
a−i∈A−i

πi
(
a−i, xi, qi(αi(x))

)
× σ∗i (a−i|x, u∗i (x)) = 0.

Let, w.l.o.g., the matrix E
[
Σ̃∗−i(X)Σ̃∗−i(X)>

∣∣Xi = xi, αi(X) = αi
]

has a full rank that equals to

2I−1 − 1, where Σ̃∗−i(x) ∈ R2I−1−1 defined by excluding σ∗−i
(
a0
−i|x, u∗i (x)

)
from Σ∗−i(x) with a0

−i ≡

(0, · · · , 0). Then

∑
a−i∈A−i/{a0

−i}
πi
(
a−i, xi, qi(αi(x))

)
× σ∗i (a−i|x, u∗i (x)) = −σ∗i (a0

−i|x, u∗i (x))πi
(
a0
−i, xi, qi(αi(x))

)
.
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By Lemma 7, σ∗i (a−i|x, u∗i (x)) are identified for all a−i. Thus, conditioning on xi and αi(x), the

coefficient term πi
(
·, xi, qi(αi(x))

)
in above equation is identified in terms of the unknown scale

πi
(
a0
−i, xi, qi(αi(x))

)
under Assumption RC–2.

Now we show the identification of the sign of πi
(
·, xi, qi(αi)

)
. W.L.O.G., let αi(x′) < αi. Then by

Assumption M, there is

∑
a−i∈A−i

πi
(
a−i, xi, qi(αi)

)
× σ∗i (a−i|x, qi(αi)) < 0.

By the proof of Lemma 7, σ∗i (a−i|x, qi(αi)) is identified by the copula function of U when (αi, α−i(x′))

is in the support Sα(X). Moreover, from above analysis, we know that πi
(
·, xi, qi(αi)

)
is identified

up to the unknown scale πi
(
a0
−i, xi, qi(αi(x))

)
. Hence, we can denote

πi
(
·, xi, qi(αi)

)
= πi

(
·, xi, qi(αi)

)
× πi

(
a0
−i, xi, qi(αi(x))

)
where πi is the identified part. Thus{

∑
a−i∈A−i

πi
(
a−i, xi, qi(αi)

)
× σ∗i (a−i|x, qi(αi))

}
× πi

(
a0
−i, xi, qi(αi(x))

)
< 0,

from which we identify the sign of πi
(
a0
−i, xi, qi(αi(x))

)
. �

B.12. Proof of Proposition 7. With additive separability in the payoffs as well as Assumption ER,

we can obtain the following equilibrium condition by Lemma 2,

πi

(
a0
−i, xi

)
+ ∑

a−i∈A−i/{a0
−i}

hi(a−i, xi)σ
∗
−i
(
a−i|x, u∗i (x))

)
= u∗i (x) = qi(αi(x)) (13)

for all x ∈ SX such that αi(x) ∈ (0, 1), where hi(a−i, xi) ≡ πi(a−i, xi) − πi(a0
−i, xi). Such an

equilibrium condition implies that

πi

(
a0
−i, xi

)
+ ∑

a−i∈A−i/{a0
−i}

hi(a−i, xi)E
[
σ∗−i
(
a−i|X, u∗i (X))

)
|Xi = xi, αi(X) = αi(x)

]
= qi(αi(x))

(14)

The difference between eq. (13) and (14) yields

∑
a−i 6=a0

−i

hi(a−i, xi)σ
∗
−i
(
a−i, x

)
= 0 (15)

39



where σ∗−i
(
a−i, x

)
≡ σ∗−i

(
a−i|x, u∗i (x)

)
−E

[
σ∗−i
(
a−i|X, u∗i (X)

)
|Xi = xi, αi(X) = αi(x)

]
.

Under rank condition RC–3, hi(·, xi) in eq. (15) is then identified up to scale. Moreover, the

identification of the sign of hi(·, xi) can be shown similarly as that in the proof of Proposition 6. �

B.13. Proof of Corollary 2.

Proof. Fix xi ∈ SXi . Note that if πi(a−i, xi) = 0 for all a−i ∈ Ai, then Sαi(X)|Xi=xi
will be a singleton.

Then, w.l.o.g., let πi(a0
−i, xi) 6= 0. Let, w.l.o.g., hi(a−i, xi) = hi(a−i, xi)× hi(a1

−i, xi) for a−i ∈ A−i/

{a0
−i}, where hi(a−i, xi) is the identified part. Then for some x ∈ SX|Xi=xi

, αi(x) = 0. Therefore,

πi(a0
−i, xi) +

 ∑
a−i∈A−i/{a0

−i}
hi(a−i, xi)σ

∗
−i
(
a−i|x, u∗i (x))

)× hi(a1
−i, xi) = 0,

which implies that

πi(a−i, xi) = −
hi(a−i, xi)−

{
∑a−i∈A−i/{a0

−i}
hi(a−i, xi)σ

∗
−i
(
a−i|x, u∗i (x))

)}{
∑a−i∈A−i/{a0

−i}
hi(a−i, xi)σ

∗
−i
(
a−i|x, u∗i (x))

)} × πi(a0
−i, xi),

is identified up to the scale term πi(a0
−i, xi). Therefore, πi(a0

−i, xi) can be identified by the scale

normalization ‖πi(·, xi)‖ = 1, which further gives us πi(a−i, xi) for all a−i ∈ A−i. �

B.14. Necessary and sufficient condition for two structures inM3 to be observationally equiva-

lent.

Lemma 10. Suppose that two structures S ≡ [π; FU ] and S̃ ≡ [π̃; F̃U ] inM3 satisfy Assumptions RC–1,

ER and RC–3 for all x ∈ SX, then they are observationally equivalent if and only if (a) CU = C̃U on

Sα(X); (b) there exist β ∈ RI and γ ∈ RI
+, such that for all i, a−i ∈ A−i and xi ∈ SXi , π̃i(a−i, xi) =

βi + γi × πi(a−i, xi) and F̃Ui (·) = FUi (
·−βi

γi
) on the support Sβi+γi×u∗i (X).

Proof. The if part is straightforward, its proof is therefore omitted.

Now we show the only if part. Condition (a) follows immediately from condition (ii) of Lemma 4,

so it suffices to show condition (b). First, we construct an observationally equivalent structure[
πe

1(·, ·), · · · , πe
I(·, ·); Fe

U(·)
]

of structure S, such that Fe−1
U (τi1) = 0 and Fe−1

U (τi2) = 1 for τi1 < τi2 ∈

Sαi(X)|Xi=xi
and some xi ∈ SXi . Let Ce

Ui1
,··· ,Uip

= CUi1
,··· ,Uip

for all p ≥ 2, Fe
Ui
(t) = FUi

(
[t− βe

i ]/γe
i
)
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and πe
i = βe

i + γe
i πi, where

βe
i =

−F−1
Ui

(τi1)

F−1
Ui

(τi2)− F−1
Ui

(τi1)
, γe

i =
1

F−1
Ui

(τi2)− F−1
Ui

(τi1)
> 0.

Then, by Lemma 4, it is straightforward that
[
πe

1(·, ·), · · · , πe
I(·, ·); Fe

U(·)
]

and structure S are obser-

vationally equivalent to each other . Moreover, Fe
Ui
(0) = τi1 and Fe

Ui
(1) = τi2.

Similarly, let Cẽ
Ui1

,··· ,Uip
= C̃Ui1

,··· ,Uip
for all p ≥ 2, Fẽ

Ui
(t) = F̃Ui

(
[t− βẽ

i ]/γẽ
i
)

and π ẽ
i = βẽ

i + γẽ
i π̃i,

where

βẽ
i =

−F̃−1
Ui

(τi1)

F̃−1
Ui

(τi2)− F̃−1
Ui

(τi1)
, γẽ

i =
1

F̃−1
Ui

(τi2)− F̃−1
Ui

(τi1)
> 0.

Then
[
π ẽ

1(·, ·), · · · , π ẽ
I(·, ·); Fẽ

U(·)
]

is an observationally equivalent structure of structure S̃ such

that Fẽ−1
U (τi1) = 0 and Fẽ−1

U (τi2) = 1. Thus,
[
π ẽ

1(·, ·), · · · , π ẽ
I(·, ·); Fẽ

U(·)
]

is also observationally

equivalent to structure S because of observational equivalence between structures S and S̃.

There is, however, only one observationally equivalent structure Se of structure S satisfying

Fe−1
Ui

(τi1) = 0 and Fe−1
Ui

(τi2) = 1. The reason is given as follows: By Proposition 7, πe
i (·, xi) is

identified up to location and scale; And for some x−i, x′−i ∈ SX−i |Xi=xi
, there is αi(x) = τi1 and

αi(x′) = τi2. Then

∑
a−i

πe
i (a−i, xi)× σ∗−i(a−i|X = x, Ui = u∗i (x)) = Fe−1

Ui
(τi1) = 0,

∑
a−i

πe
i (a−i, xi)× σ∗−i(a−i|X = x′, Ui = u∗i (x′)) = Fe−1

Ui
(τi2) = 1,

from which we obtain a unique location and scale for πe
i (·, xi).

Consequently, πe
i (a−i, xi) = βe

i + γe
i πi(a−i, xi) = βẽ

i + γẽ
i π̃i(a−i, xi) = π ẽ

i (a−i, xi) for all a−i and

xi, from which we have

π̃i(·, xi) = βi + γiπi(·, xi).

where βi =
βe

i−βẽ
i

γẽ
i

, γi =
γe

i
γẽ

i
. Besides, in equilibrium, we can obtain the following conditions for

structure S and S̃, respectively.

∑
a−i

πi(a−i, xi) · σ∗−i(a−i|x, u∗i (x)) = u∗i (x)

∑
a−i

π̃i(a−i, xi) · σ̃∗−i(a−i|x, ũ∗i (x)) = ũ∗i (x)
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which imply ũ∗i (x) = βi + γi · u∗i (x) since we have π̃i(·, xi) = βi + γiπi(·, xi) obtained earlier and

σ∗−i(·|x, u∗i (x)) = σ̃∗−i(·|x, ũ∗i (x)) from condition (a) and Lemma 7. We then get F̃Ui (ui) = FUi (
ui−βi

γi
)

for every ui ∈ Sβi+γi ·u∗i (X) from the observational equivalence condition FUi (u
∗
i (x)) = F̃Ui (ũ

∗
i (x)),

which completes the proof. �
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