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ABSTRACT. This paper uses a game theoretic model to capture the interactions among indi-

viduals within a social network, and establishes nonparametric identification and inference

on the game structural model. Consider observations from a single equilibrium of a network

game in which each player chooses an action from a finite set and is subject to interactions

that are local — the interactions only occur among friends. All observations are potentially

dependent on each other because they are interpreted as arising from a single equilibrium of

settings where players interact directly or indirectly. Simple assumptions about the structure

are made that ensure that the game has a unique equilibrium and the equilibrium has a

stability property. The formulation of this stability property is new and serves as the basis

for statistical inference. I establish the identification of the structural model and introduce an

estimation procedure called (sieve) maximum approximated likelihood.
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1. INTRODUCTION

In many social science research areas, observations are usually dependent on each other

because of the interactions among agents directly and indirectly. Common features of these

social interactions are that agents are embedded in a social network and the interactions

spread through the network. In this paper, I propose a simple discrete game model to

describe the social interactions that are ‘local’ — for example, teenagers’ smoking behaviors

are affected by their closest friends (Nakajima (2007)). The social network is assumed to

be exogenously given and captures all the local relationships among agents. I establish

the existence and uniqueness of equilibrium. Simple assumptions about the structure are

made to ensure that the game has a unique equilibrium and the equilibrium has a stability

property. I also give identification and estimation results for the structural model in a

semiparametric setup.

The structure of the model is as follows: there are N players with exogenously de-

termined locations in a social network. Each player makes a choice from a finite set,

A = {0, 1, 2, · · · , K}. Player i’s payoff depends on not only her private information εi,

commonly observed characteristics Xi and her own choice, but also the choices of her

direct neighbors on the network. The players move simultaneously and the equilibrium

concept is the pure strategy Bayesian Nash Equilibrium (BNE). Simple assumptions about

the structure are made to ensure that the game has a unique equilibrium. The BNE gives

rise to a conditional distribution over actions induced by the distribution of private infor-

mation, where the conditioning variables are the commonly observed characteristics of all

players. This game is simple enough to allow straightforward analysis, yet rich enough for

us to illustrate the central issues for the social–interaction analysis. Early examples of local

interactions network game include Carlsson and Van Damme (1993) and Morris and Shin

(2002), etc.

Conceivably, in this network game, all observations are potentially dependent on each

other because they are interpreted as arising from a single equilibrium of settings where

players interact directly or indirectly based on the network configuration. The dependence

structure, in contrast to the time series and spatial econometrics, is derived from the

equilibrium of the network game. I characterize such a dependence structure with a stability
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property — the dependence between any two players’ choices will vanish at an exponential

rate, as the distance between them increases. The formulation of such a property is the basis

for statistical inference. Such a dependence structure is different from the existing social

interaction literature, e.g., Manski (1993, 2000), Brock and Durlauf (2001a,b) and others,

where each individual reacts to the average behavior of the group that she belongs to, and

individuals in the same group are equally affected by the averages.1

Several applications can be entertained in social interactions, such as obesity, drug

addiction and criminality among teenagers but also the impact of social networks on job

search. Most of the existing social network literature assumes that each player’s payoff

is not affected by her friends’ current choices but the choices in the previous stage (see,

e.g., Maxwell (2002) and Ennett and Bauman (1993)), which effectively assumes away the

presence of ‘endogenous interactions’ (see Manski (2000)).

An important feature of the empirical social network game is that the data observed are

usually from one (or a few) social network and the number of agents on the network is

large. Most of the existing empirical game literature, e.g. Aguirregabiria and Mira (2002,

2007), Bajari, Hong, Krainer, and Nekipelov (2010), Bjorn and Vuong (1984), Bresnahan and

Reiss (1991a,b), Pesendorfer and Schmidt-Dengler (2003) and Tamer (2003), assumes that

the number of players is fixed and that the same game is played repeatedly in a sequence

of independent local markets, or at different points in time. The number of markets is

moreover assumed to grow large. In contrast, I assume that there is only a single market

and that the number of players increases in the asymptotic analysis. Therefore, I consider a

sequence of games indexed by the number of players. This asymptotics approach is new

and more applicable in the case that observations come from one or several games and a

large number of players are involved in each game.

To estimate the network game structure, I develop a new estimation method rather than

rely on the two–step method pioneered by Aguirregabiria and Mira (2002) and used in much

of the literature on such games. My method starts with the (pseudo) loglikelihood function,

which obtains by approximating each player’s equilibrium strategy by solving a much

1As a consequence of the react–to–average models, the dependence between any two individuals decreases
with the number of members in the same group. As the number of members increases, the equilibrium solution
converges to a competitive equilibrium.
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smaller–sized game — player’s ‘h–neighborhood’ game. In player i’s ‘h–neighborhood’

game, she and all rivals that are within her h distance interact strategically with each other

and all the other players outside of the distance h have not been taken into account. When

h is small, obtaining a solution to each player’s h–neighborhood game is computationally

less expensive than the original one. By choosing appropriately the distance h, namely h

to grow with N at a polynomial rate, I show that the approximated likelihood behaves

asymptotically as well as the underlying likelihood.

In the existing dependent–data econometrics literature, there are few papers dealing

with discrete choice models; exceptions include Pinkse and Slade (1998, 2007) and Klier

and McMillen (2008). When the choice variables are discrete, the dependence pattern is

inherently nonlinear in nature. In this paper, I derive this nonlinear dependence pattern

from the best responses of all individuals, instead of assuming a predefined pattern. The

pioneering work by Bresnahan (1987) and Seim (2006) also studied local interactions among

firms with differentiated products, but focused on the endogenous product–location choices

in the product space.

The organization of the paper is as follows. In the next section, I specify a static discrete

choice game of incomplete information. The solution concept adopted is standard: the

Bayesian Nash Equilibrium. In Section 3, I establish the identification in a semiparametric

setup. In Section 4, I propose the MAL estimation approach in both parametric and

semiparametric setups. Asymptotics properties of MAL estimators are established.

2. THE MODEL

2.1. Game structure. I consider a simultaneous–move game of incomplete information.

There are N players indexed by i ∈ IN = {1, · · · , N}, with exogenously determined

locations. Players simultaneously choose their actions Y1, · · · , YN ∈ A = {0, 1, 2, ..., K}.2

I further assume that the payoff of player i from choosing k ∈ A given other players’

choices equals

uik = β0(Xi, k) + ∑
j 6=i

α0(k, Yj)gij + εi(k) (1)

2Here I assume that the set of actions is identical across players. This assumption is only for notational
convenience and could be relaxed.
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where Xi ∈ X ⊆ Rp, a vector of exogenous variables, is publicly observed by all players

and β0(·, k) : X → R is a choice–specific function. For each ` ∈ A, α0(k, `) ∈ R is the

strategic effect coefficient if another player chooses `. Moreover, gij ∈ R+, for j 6= i, is an

exogenous variable which describes the strength of the strategic effect; gij will be specified

later in terms of players’ network locations. Let Gi = (gi1, · · · , giN) where gii = 0. Gi is

assumed to be public information. Finally, εi = (εi(0), · · · , εi(K)) is a vector of player i’s

action–dependent payoff shocks, which is privately observed by player i before actions are

taken. Other players cannot observe εi; however, they know how the εi’s are distributed.

As is standard for discrete choice models, only the differences of the choice–specific

payoff functions matter to decision–makers. It is therefore necessary to impose some

normalization. Without loss of generality, I normalize the mean payoff of action 0 to

zero by assuming β0(x, 0) = α0(0, `) = 0 for all x ∈ X and ` ∈ A. Thereafter, let α0k =

(α0(k, 0), · · · , α0(k, K))T for k ∈ A\{0}. Let further α0 =
(
αT

01, αT
02, · · · , αT

0K
)T ∈ RK(K+1) and

β0 = (β0(·, 1), β0(·, 2), · · · , β0(·, K))T. Hence, α0 is a finite–dimensional parameter and β0 is

a vector of functions. Further, let θ0 = (αT
0 , βT

0 )
T ∈ Θ = A×B, where A ⊆ RK(K+1) and B

is a vector–valued function space.

Let Wi = (XT
i , GT

i )
T and SN = (WT

1 , · · · , WT
N)

T. Let further SN and RK+1 be the support

of SN and εi respectively. Given the structural parameter value θ0, a strategy for player i is

a function ri(SN , εi; θ0) which maps from player i’s private information εi and the public

signal SN to a discrete choice Yi = ri(SN , εi; θ0). In BNE, each player’s strategy maximizes

her (conditional) expected payoff given all the information available to her. Let {r∗i }
N
i=1 be a

BNE strategy profile. Thus player i’s equilibrium strategy satisfies

r∗i (SN , εi; θ0) = argmax
k∈A

E (uik|SN , εi)

= argmax
k∈A

[
β0(Xi, k) + ∑

j 6=i

K

∑
`=0

{
α0(k, `)gij ×P

(
r∗j (SN , εj; θ0) = `

∣∣∣SN , εi

)}
+ εi(k)

]
. (2)

2.2. Equilibrium characterization. I first make an assumption on the distribution of pri-

vate signals.
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Assumption A. The private shocks εi(k) are distributed i.i.d. across both actions and players, and

conform to an extreme value distribution with density f (t) = exp (−t) exp [− exp (−t)] .

Let σ∗ik(SN ; θ0) = P [r∗i (SN , εi; θ0) = k|SN ] be the conditional choice probability of player

i choosing k in equilibrium. Note that P
{

r∗j (SN , εj; θ0) = `|SN , εi
}
= σ∗j`(SN ; θ0) for j 6= i

when εi and εj are independent of each other. Hence, under Assumption A, obtaining an

expression for σ∗ik(SN ; θ0) in terms of Xi, Gi and σ∗j`(SN ; θ0) (j 6= i, ` ∈ A) is straightforward.

Now I arrive at the following lemma

Lemma 1. Let σ∗i (SN ; θ0) = (σ∗i0(SN ; θ0), · · · , σ∗iK(SN ; θ0)) be player i’s equilibrium conditional

choice probability. Then the profile {σ∗i (SN ; θ0)}N
i=1 is a one to one mapping of {r∗i (·, SN ; θ0)}N

i=1,

and a BNE solution can be obtained by solving: for all i ∈ IN and k ∈ A

σ∗ik(SN ; θ0) =
exp

[
β0(Xi, k) + ∑K

l=0

{
α0(k, `)∑j 6=i gijσ

∗
j`(SN ; θ0)

}]
1 + ∑K

q=1 exp
[

β0(Xi, q) + ∑K
l=0

{
α0(q, `)∑j 6=i gijσ

∗
j`(SN ; θ0)

}] . (3)

Proof. See Appendix A.1. �

Equation (3) is the common logit functional form, except that there are choice probabilities

of player i’s neighbors on the right hand side. It is routine to apply Brouwer’s fixed point

theorem to prove the existence of a solution in (3), which therefore gives me the existence

of a BNE solution in this game. Note that multiple solutions to equation (3) could exist

and each of them would correspond to a BNE in the game. Later, I will impose further

conditions to obtain a unique solution.

2.3. Neighbors. I assume that all players are exogenously located on a social network, and

the network locations are public information. Observables gij depend on player i’s and j’s

locations. In this paper, I take gij = 1 if j is i’s ‘neighbor’ on the social network and zero

otherwise.3 Note that gii = 0 by definition, as mentioned at the beginning of this section. A

similar setup can be found in the spatial econometrics literature (see e.g. Case (1991) and

Pinkse and Slade (1998)). Although restricting gij to be binary is a limitation, using this

3The concept of neighbor can be formally defined in many ways, for instance, player j is i’s neighbor on the
social network if j is one of i’s best friends. Note that the symmetry of the neighborship, however, is not
necessarily required, i.e., gij 6= gji is allowed.
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makes my model more tractable. In principle, it is possible to allow for gij that depend on

the network distance between i and j; I intend to pursue this possibility in future work.

Under the above specification of gij, equation (3) can be simplified as follows. Let

Ni = {j ∈ IN : gij = 1} be the collection of player i’s neighbors. For all i ∈ IN and all

k ∈ A,

σ∗ik(SN ; θ0) =
exp

[
β0(Xi, k) + ∑K

`=0

{
α0(k, `)∑j∈Ni

σ∗j`(SN ; θ0)
}]

1 + ∑K
q=1 exp

[
β0(Xi, q) + ∑K

`=0

{
α0(q, `)∑j∈Ni

σ∗j`(SN ; θ0)
}] . (4)

Hereafter, I focus on equation (4) instead of (3) to discuss the equilibrium solution.

Note that the strategic interaction between a pair of players could occur directly, if they

are neighbors on the social network, or indirectly through their neighbors, or neighbors’

neighbors, etc.

2.4. Interaction strength. To establish my results, I now restrict the interaction strength

between players in my structural model, which ensures that the BNE solution is unique and

has a spatial stability property. Similar to other spatial models, with too much interaction,

there could be multiple equilibria, or a counterfactual change of one player’s characteristics

could cause the equilibrium to change radically (see Pinkse and Slade (2010)). Hence, I

make the following primitive assumptions.

Assumption B. There exists a constant M ∈N (independent of N) such that maxi∈IN C(Ni) ≤

M with probability one, where C(Ni) is the cardinality of the set Ni.

Assumption B restricts the number of neighbors of any player to be less than a constant

M. This assumption can also be found in Morris (2000) for the contagion analysis in local

interaction games. In the one–dimensional spatial competition model, e.g. Salop (1979),

M can equal two. Note that M does not depend on N, which restricts the pattern of

neighborship formation of new players in a growing spatial structure.

Assumption C. λ0 = maxk,`,m∈A |α0(k, `)− α0(m, `)| × MK
K+1 < 1.

Given the number of choices (K + 1) and the upper–bound of the number of neighbors

(M), Assumption C restricts the scale of the strategic effect coefficient differences. In the
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Salop (1979) circle model, if players compete with each other in terms of choosing an output

level and α0(k, `) ≤ α0(k′, `′) ≤ 0 for all k′ ≤ k and `′ ≤ `, then Assumption C means

that λ0 = −α0(K, K) × MK
K+1 < 1. Assumption C plays a similar role as the requirement

in autoregression models that all roots lie outside the unit circle. It should be noted that

Assumption A has already implicitly imposed a normalization restriction on the scale of α0

since the standard error of the private signals has been assumed to be one.

Under Assumptions B and C, I establish the properties of the BNE in the next lemma. To

proceed, I first introduce some notation and a definition of spatial stability condition.

For any integer h ≥ 0, let N(i,h) be the h–neighborhood of i, which is defined inductively,

N(i,0) = {i} and N(i,h) = N(i,h−1)
⋃ ⋃

j∈N(i,h−1)

Nj

 .

By definition, N(i,1) = {i} ∪ Ni. Let S(i,h)
N be all the public information within i’s h–

neighborhood, i.e.

S(i,h)
N =

(
{Xj}j∈N(i,h)

, {gnj}n,j∈N(i,h)

)
. (5)

Now I define a choice probability profile
{

σ
(i,h)
j

(
S(i,h)

N ; θ0

)}
j∈N(i,h)

only for those play-

ers in i’s h–neighborhood, which depends only on the public information within i’s h–

neighborhood, i.e. for any j ∈ N(i,h)

σ
(i,h)
jk

(
S(i,h)

N ; θ0

)
=

exp
[

β0(Xj, k) + ∑K
`=0

{
α0(k, `)∑n∈Nj∩N(i,h)

σ
(i,h)
n` (S(i,h)

N ; θ0)
}]

1 + ∑K
q=1 exp

[
β0(Xj, q) + ∑K

`=0

{
α0(q, `)∑n∈Nj∩N(i,h)

σ
(i,h)
n` (S(i,h)

N ; θ0)
}] .

(6)

By definition, the solution of equation (6) can be viewed as a BNE solution to a smaller–sized

game than the original one. Players outside player i’s h–neighborhood are not taken into

account. I can now formally define the spatial stability condition.

Definition 1 (Spatial stability condition). Suppose {(σ∗1 , · · · , σ∗N)}
∞
N=1 is a sequence of equilibria

indexed by the number of players in the game structures described in Section 2.1. This equilibria

sequence satisfies the spatial stability condition if there exists a determinant sequence, ξh ↓ 0, such
8



that for any h, N ∈N,

max
i∈IN

∥∥∥σ∗i (SN ; θ0)− σ
(i,h)
i

(
S(i,h)

N ; θ0

)∥∥∥
1
≤ ξh, a.s. (7)

The spatial stability condition implies that if one player’s characteristics change, the

counterfactual impact on another player’s equilibrium strategy will decrease with the

distance between them.

Lemma 2. Suppose that Assumptions A through C hold. Then, for any N ∈N, (i) there exists a

unique BNE; (ii) the game structure satisfies the spatial stability condition, in particular ξh = 2λh
0.

Proof. See Appendix A.2 �

The proof of the uniqueness of the BNE involves two conditions related to the private

information term: additivity in the payoff function, and independence of the private

signals across players. These two conditions allow for a contraction mapping analysis

being conducted in choice probability space, instead of in strategy space (see e.g. Mason

and Valentinyi (2010)). Equation (7) shows that the spatial stability condition is satisfied

in this (unique) BNE, where the dependence of a player’s equilibrium strategy on the

characteristics of other players vanishes with their distances at an exponential rate.

Spatial stability condition serves as the basis for empirical inference, when all observa-

tions come from the equilibrium of a single draw of the game, instead of a repetition of

the same game. Albeit complicated, the distribution of observables can be consistently

estimated under spatial stability property. Equation (7) implies that, conditioning on a

player’s h–neighborhood state variable S(i,h)
N , the heterogeneity of the choice probability

can be bounded above by a function of h that decreases to zero at an exponential rate. The

following result summarizes above analysis.

Theorem 1. Suppose that Assumptions A through C hold. Then, for any N ∈N and k ∈ A

max
i∈IN

∣∣∣P(Yi = k|SN)−P
(

Yi = k|S(i,h)
N

)∣∣∣ ≤ 4λh
0 , a.s. (8)

Proof. See Appendix A.3
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Hence, P(Yi = k|SN) can be consistently estimated by a kernel-based nonparametric

estimator of P
(

Yi = k|S(i,h)
N

)
with h growing to infinity with N.4

3. IDENTIFICATION

I now discuss identification in the sense of Hurwicz (1950) and Koopmans and Reiersol

(1950). As the limit of estimation, identification analysis is concerned with the possibility of

getting a unique value θ0 ∈ Θ to rationalize the joint distribution of observables PY1,··· ,YN ;SN .

My approach is constructive, i.e., for the given PY1,··· ,YN ;SN , I provide explicit formulas for

both α0 and β0 under sufficient conditions. My identification results are related to those of

Bajari, Hong, Krainer, and Nekipelov (2010).

Note that σ∗ik(SN ; θ0) = P(Yi = k|SN) when the equilibrium is unique under Assumptions

A through C (see Lemma 2). Let ∆ik(SN) = ln P(Yi = k|SN)− ln P(Yi = 0|SN) for k ∈ A.

Both σ∗ik(SN ; θ0) and ∆ik(SN) can be derived from PY1,··· ,YN |SN
, and hence they are identified.

Note also that equation (4) gives me

∆ik(SN) = β0(Xi, k) +
K

∑
`=0

{
α0(k, `) ∑

j∈Ni

P(Yj = `|SN)

}
, i ∈ IN , k ∈ A. (9)

I will derive an expression for α0 and β0, respectively, in terms of {PYj|SN
}j∈Ni and {∆ik(SN)}k∈A

from equation (9).

Recall that SN consists of all public information in the game. In equation (9), if I hold

Xi constant and vary ∑j∈Ni
P(Yj = `|SN) by changing SN , then α0 can be identified if an

additional rank condition is satisfied. Essentially, equation (9) can, for the purpose of

identification, be thought of as a partial linear model (see Robinson (1988)) and the rank

condition in Assumption D originates in that literature.

4Here, P(Yi = k|SN) also varies with sample size N and the consistency of its estimator, ̂P(Yi = k|SN), is
defined as follows,

lim
N→∞

∣∣∣ ̂P(Yi = k|SN)−P(Yi = k|SN)
∣∣∣ = 0.
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Assumption D. For φi`(SN) = ∑j∈Ni
P(Yj = `|SN) and Φi(SN) = (φi0(SN), · · · , φiK(SN))

T,

max
i∈IN

∣∣∣det
(

E
[

Var {Φi(SN)|Xi}
])∣∣∣ > 0.5 (10)

Assumption D is not primitive, but testable if the conditional choice probabilities can

be consistently estimated. Assumption D fails to hold when the number of neighbors is a

constant for all players as in e.g. the Salop (1979) model. Indeed, then (φi0, · · · , φiK) would

be collinear, since ∑K
k=0 φik would be a constant. In this case, a further normalization of

the coefficients will be necessary, e.g. α0(k, 0) = 0 for all k ∈ A. On the other hand, if

E
[

Var
{

C(Ni)|Xi
}]

> 0, then α0(k, 0) can be identified using the variation in C(Ni) while

Xi is held fixed.

Under Assumption D, I obtain an expression for (α0, β0) from equation (9), which gives

me the identification results. Before that, I introduce some notation. Let Ui(SN) = Φi(SN)−

E {Φi(SN)|Xi} and Vik(SN) = ∆ik(SN)−E {∆ik(SN)|Xi} for k ∈ A.

Theorem 2. Suppose that Assumptions A through D hold. Then the structural parameter θ0 is

identified, i.e. θ 6= θ0 =⇒ PY1,··· ,YI ;SN (θ) 6= PY1,··· ,YI ;SN (θ0). Moreover, for all k ∈ A and x ∈ X ,

α0k =
[
E
{

Ui(SN)UT
i (SN)

}]−1
E {Ui(SN)Vik(SN)} , (11)

β0(x, k) = E {∆ik(SN)|Xi = x} −
K

∑
`=0

α0(k, `)E {φi`(SN)|Xi = x} . (12)

Proof. See Appendix A.4. �

It should be noted that, the above identification results are established under fixed

N. However, for estimation I need N to increase to infinity and I must hence establish

identification in the limit, also.

Assumption E (Rank Condition).

lim inf
N→∞

max
i∈IN

∣∣∣det
(

E
[

Var {Φi(SN)|Xi}
])∣∣∣ > 0.

Theorem 3. Suppose that Assumptions A through C, and E hold, then θ0 is identified when N is

sufficiently large.

5The determinant of a matrix A is denoted det(A).
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Proof. See Appendix A.5. �

Analogous identification conditions can be formulated in fully parametrized models, and

such conditions are more straightforward than those used in Theorem 3. If one assumes

that β0(Xi, k) = XT
i β0k for β0k ∈ Rp and k ∈ A\{0}. Let XNi =

(
ΦT

i (SN); XT
i
)T. Then the

rank condition can be directly derived from equation (9).

Assumption F (Rank Condition for linear–index setup).

lim inf
N→∞

max
i∈IN

∣∣∣det
{

E
(

XNiX
T
Ni

)}∣∣∣ > 0.

Replace Assumption E with F in Theorem 3, then the identification of α0 and (β01, · · · , β0K)

is straightforward for the sufficiently large N; moreover, for all k ∈ A\{0},(
αT

0k, βT
0k

)T
=
[
E
{

XNiX
T
Ni

}]−1
E
{

XNi∆ik(SN)
}

. (13)

4. ESTIMATION

In this section, I discuss estimation of the structural parameters. The identification

arguments suggest an estimator of θ0 based on nonparametrically estimated σ∗ik(SN ; θ0)’s.

However, I do not pursue this approach because the domain of the equilibrium choice

probability functions increases with N in the asymptotic analysis. Consequently, one would

be estimating a nonparametric function whose domain is increasing with the sample size.

In contrast, my MAL estimation procedure solves σ∗ik(SN ; θ) as a fixed point of equation (4).

From hereon, I add a subscript N to σ∗i for emphasizing the fact that the equilibrium

solution depends on the number of players. As in the classical multinomial logit model, the

likelihood function depends on the equilibrium choice probability of each action of each

player. Formally, the likelihood function is

pN(SN)
N

∏
i=1

K

∏
k=0
{σ∗Nik(SN ; θ)}1(Yi=k) , (14)

where pN is the density function of SN . Because σ∗Nik does not have an analytic expression

and its numerical calculation becomes costly as N increases, the classical ML estimator is

infeasible to compute. Instead, the basic idea of my estimation procedure is to approximate

σ∗Nik by σ
(i,h)
ik , where h is an integer that depends on N and will be specified later. Namely,

12



the approximated likelihood function is given by

pN(SN)
N

∏
i=1

K

∏
k=0

{
σ
(i,h)
ik

(
S(i,h)

N ; θ
)}1(Yi=k)

. (15)

Therefore, I define my MAL estimator θ̂ ∈ Θ as the maximizer of the approximated

loglikelihood function

L̂h
N(θ) =

1
N

N

∑
i=1

[
K

∑
k=0

{
1 (Yi = k) ln σ

(i,h)
ik

(
S(i,h)

N ; θ
)}]

.

The choice of h depends on the sample size, namely h = h0 × [Nω] for some constant

h0 ∈N and w > 0, where [a], for arbitrary a ∈ R, is the largest interger which is no larger

than a. The consistency of estimation requires that h should increase to infinity with the

sample size N, such that the approximation error of the likelihood function would vanish.

Moreover, by choosing h at a polynomial rate of N, I show in Theorem 5 that the MAL

estimator performs asymptotically as same as the infeasible ML estimator.

It should also be noted that if h = 0, then N(i,0) = {i} and equation (6) becomes

σ
(i,0)
ik (S(i,0)

N , θ) =
exp {β(Xi, k)}

1 + ∑K
q=1 exp {β(Xi, q)}

.

which is the choice probability in the classical multinomial logit model.

Now, I will first illustrate my method in a parametric setup and then in a semiparametric

framework. For the sake of notational simplicity, I assume that all players’ choices are

observed. An extension to the situation of missing observations is discussed in Section 5.

4.1. Parametric Approach. Here I consider a case where the payoff functions are known

up to a finite–dimensional vector of parameters. In particular, I assume that β0(x, k) =

xT β0k for all k ∈ A\{0}, where β0k ∈ Rp. Let (βT
01, · · · , βT

0K)
T ∈ B ⊆ RKp. I denote

β0 = (βT
01, · · · , βT

0K)
T ∈ RKp, θ0 = (αT

0 , βT
0 )

T ∈ RL and Θ = A × B ⊆ RL, where L =

Kp + K(K + 1).

The following assumptions are also made for the consistency of θ̂.

Assumption G. X is bounded.

Assumption H. Θ is compact.
13



Assumption I. There exists a λ ∈ (0, 1) such that

sup
α∈A

max
k,`,m∈A

|α(k, `)− α(m, `)| × MK
K + 1

≤ λ.

Assumption G ensures that choice probabilities are bounded away from zero so that

the likelihood function is bounded. Assumption H is standard. Assumption I strengthens

Assumption C.

Assumption J (identical distribution). For each N ∈N, SN conforms to a probability distribu-

tion PSN . For any permutation {i1, · · · , iN} of the player’s index set {1, · · · , N}, let S′N and PS′N

be the state variable (WT
i1 , · · · , WT

iN
) and its probability distribution respectively. Then PSN = PS′N

.

Assumption J means that the joint distribution PSN is symmetric across players.

Theorem 4. Suppose that Assumptions A, B, and F through J hold. Then θ̂
p→ θ0.

Proof. See Appendix B.4. �

Now that the consistency of θ̂ is established, I discuss its asymptotic normality. First, I

introduce some notation. Let ZNi = (Yi, SN) and fNi(ZNi, θ) = ∏K
k=0 σ∗Nik(SN ; θ)1(Yi=k). Let

further JNi(θ0) = E
{

∂
∂θ ln fNi(ZNi, θ0)

∂
∂θT ln fNi(ZNi, θ0)

∣∣∣SN

}
and JN(θ0) = N−1 ∑N

i=1 JNi(θ0).

Assumption K. θ0 belongs to the interior of Θ.

Assumption L. There exists a non–singular L by L matrix J0, such that JN(θ0)
p→ J0.

Assumption K is standard in the literature. Assumption L imposes restrictions on the

sequence of game models indexed by the number of players in the asymptotic analysis. It

could be derived from primitive restrictions on the probability measure of (S1, · · · , S∞), for

instance, fix any h ∈N, the probability distribution P
S(i,h)

N
converges to a limit distribution

as N → ∞.

Theorem 5. Suppose that Assumptions A, B, F through L hold. Then
√

N(θ̂ − θ)
d→ N

(
0, J−1

0

)
.

Proof. See Appendix B.5.
14



Because J0 is the Fisher information matrix when the number of players goes to infinity,

Theorem 5 implies that the MAL estimator behaves asymptotically as well as the maximum

likelihood estimator. Note that J0 can be consistently estimated by

1
N

N

∑
i=1

{
∂

∂θ
ln f h

Ni(ZNi, θ̂)
∂

∂θT ln f h
Ni(ZNi, θ̂)

}
,

where f h
Ni(ZNi, θ) = ∏K

k=0 σ
(i,h)
ik

(
S(i,h)

N ; θ
)1(Yi=k)

.

4.2. A Semiparametric Approach. I now consider a semiparametric setup in which the

payoff function β0 is an unknown element of an infinite–dimensional function space B.

Below I propose a sieve estimator which I show to be consistent and asymptotically normal.

There is a variety of function spaces one may consider in nonparametric estimation.

In particular, I assume that B is a Hölder class of functions, which is known to be well–

approximated by linear sieves (see Chen (2007)).

Further, I assume that X is scalar–valued. This assumption is for notational convenience

only and could be relaxed. In addition, the analysis below for scalar–valued X can be easily

extended to single–index specifications, e.g. β0(x, k) = F0k(xTγ0k) with some identification

restrictions (see e.g. Bierens (2008)). To avoid the curse of dimensionality in the case

of vector–valued X, the following analysis with modifications according to a particular

single–index specification can be useful in practice.

Assumption M. For q ∈N, K0 ∈ R+ and q + m > 1/2,

B =
{

β = (β1, · · · , βK)
T : βk : X → R;

‖β(s)‖sup < ∞, s = 0, · · · , q;

sup
x1,x2∈X ; x1 6=x2

∣∣∣β(q)
k (x1)− β

(q)
k (x2)

∣∣∣ ≤ K0 |x1 − x2|m
}

,

where β
(s)
k is the s–th derivative of βk.

15



Let ρ(·, ·) be some pseudo–distance on Θ. Like Shen and Wong (1994), I use trigonometric

polynomials to approximate Θ. Let

BN =
{

β : βk(x) = ak0 +
rN

∑
j=1

{
akj cos(2π jx) + bkj sin(2π jx)

}
,

a2
k0 +

rN

∑
j=1

j2(q+m)
(

a2
kj + b2

kj

)
≤ A0 ln N; akj, bkj ∈ R and k ∈ A\{0}

}
,

for some A0 ∈ R+ and some positive integer rN . Let ΘN = A×BN . Note that other linear

sieves could also be used in my context, for instance, polynomials, B–splines (see Chen

(2007) for more discussions).

Assumption N. A is compact.

Assumption O. rN = O
(

N
1

2q+2m+1

)
.

Under Assumption O, it is known that ρ(πNθ, θ) = O
(

N−
q+m

2q+2m+1

)
(see Lorentz (1966)),

where πNθ is the projection of θ on the sieve space ΘN . Assumption N restricts the space of

parametric part to be compact in this semiparametric setup. In contrast, compactness is not

required for the space of the nonparametric part.

The estimator θ̃ = (α̃, β̃) is defined as follows:

θ̃ = argmax
θ∈ΘN

L̃h
N(θ) = argmax

θ∈ΘN

N

∑
i=1

[
K

∑
k=0

{
1 (Yi = k) ln σ̃

(i,h)
Nik (SN ; θ)

}]
,

where σ̃
(i,h)
Ni (SN ; θ) is defined in equation (6).

Theorem 6. Suppose Assumptions A, B, E, I, and K through O hold, then

ρ(θ̃, θ0) = Op

(
N−

q+m
2q+2m+1

)
.

Proof. See Appendix B.6 �

To derive the limiting distribution of a random process, I need to define the directional

derivative in the functional space. Let m(·) : RdZ ×Θ→ R, where dZ ∈N+. Then, for any
16



ν ∈ Θ− {θ},6 let further

mθ(ν)(Z, θ) =
∂m(Z, θ)

∂θ(ν)
= lim

t→0

m(Z, θ + tν)−m(Z, θ)

t
.

Take m∗(ZNi, fNi, θ) = ln fNi(ZNi, θ). Let further

H0(τ, ν) = lim
N→∞

E

[
∂m∗(ZNi, fNi, θ0)

∂θ(τ)
× ∂m∗(ZNi, fNi, θ0)

∂θ(ν)

]
.

For any θ1, θ2 ∈ Θ, let 〈θ1, θ2〉 be defined by

〈θ1, θ2〉 = ∑
k,`∈A

{α1(k, `)α2(k, `)}+
∫
X

β1(x)β2(x)dFX.

For any ν ∈ Θ− {θ0}, let ξ(ν) ∈ Θ be defined by

H0(ξ, τ) = 〈ν, τ〉 , for all τ ∈ Θ− {θ0}.

In the parametric case, where θ0 is a finite–dimensional vector, ξ(ν) = ν× J−1(θ0).

Theorem 7. Suppose Assumptions A, B, E, I, and K through O hold. Let ν ∈ Θ− {θ0}. Then

√
N
〈
θ̃ − θ0, ν

〉 d→ N
(

0, H0 (ξ(ν), ξ(ν))
)

.

Proof. See Appendix B.7. �

When ν ∈ (A− α0) × 0B , Theorem 7 provides the limiting distribution of α̃ in sieve

estimates.
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APPENDIX A.

A.1. proof of Lemma 1. By definition, {σ∗i (SN ; θ0)}N
i=1 can be derived from the equilibrium

strategy profile {r∗i (·, SN ; θ0)}N
i=1. So it suffices to show that {r∗i (·, SN ; θ0)}N

i=1 can also be

induced from {σ∗i (SN ; θ0)}N
i=1. To see this, note that equation (2) can also be written as

r∗i (εi, SN ; θ0) = argmax
k∈A

[
β0(Xi, k) + ∑

j 6=i

K

∑
`=0

{
α0(k, `)gijσ

∗
jl(SN ; θ0)

}
+ εi(k)

]
.

�

A.2. proof of Lemma 2. I first establish (ii) by mathematical induction. Fix i, h, s. I show

that for all q = 1, · · · , h, there is

max
j∈N(i,h−q)

∥∥∥σ∗j (s; θ0)− σ
(i,h)
j

(
s(i,h); θ0

)∥∥∥
1
≤ 2λ

q
0 . (16)

Lemma A.6 implies that (16) holds for q = 1. Moreover, if for any q ≤ q0 ∈ {1, · · · , h− 1},

(16) is satisfied. Then, I need to show that (16) also holds for q = q0 + 1. Lemma A.6 implies

that for any j ∈ N(i,h−q0−1) ⊂ N(i,h−1), there is∥∥∥σ∗j (s; θ0)− σ
(i,h)
j

(
s(i,h); θ0

)∥∥∥
1
≤ λ0 ×max

n∈Nj

∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

)∥∥∥
1

. (17)

Note that n ∈ Nj and j ∈ N(i,h−q0−1) implies that n ∈ N(i,h−q0). Thus, by equation (16)

max
n∈Nj

∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

)∥∥∥
1

≤ max
n∈N(i,h−q0)

∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

)∥∥∥
1
≤ 2λ

q0
0 . (18)

Thus, equations (17) and (18) imply that (16) also holds for q0 + 1. Under Assumption C,

2λh
0 ↓ 0 as h→ ∞.

I then establish (i) by contradiction. Suppose that there are two equilibria {σ∗n (s; θ0)}N
n=1

and {σn(s; θ0)}N
n=1 for some N ∈ N and s ∈ SN . Using a similar argument as that in

Lemma A.6, for any i ∈ IN

‖σ∗i (s; θ0)−σi(s; θ0)‖1 ≤ λ0×max
j∈Ni

∥∥∥σ∗j (s; θ0)− σj(s; θ0)
∥∥∥

1
≤ λ0×max

j∈IN

∥∥∥σ∗j (s; θ0)− σj(s; θ0)
∥∥∥

1
.

21



Hence,

max
i∈IN
‖σ∗i (s; θ0)− σi(s; θ0)‖1 ≤ λ0 ×max

j∈IN

∥∥∥σ∗j (s; θ0)− σj(s; θ0)
∥∥∥

1
.

Since 0 < λ0 < 1, contradiction. �

A.3. Proof of Theorem 1. From Lemma 2, for any N ∈N and k ∈ A

max
i∈IN

∣∣∣P(Yi = k|SN)− σ
(i,h)
ik

(
S(i,h)

N ; θ0

)∣∣∣ ≤ 2λh
0 , a.s.

and

max
i∈IN

∣∣∣P (Yi = k|S(i,h)
N

)
− σ

(i,h)
ik

(
S(i,h)

N ; θ0

)∣∣∣ ≤ 2λh
0 , a.s..

Hence, equation (8) can be derived from above two equations. �

A.4. Proof of Theorem 2. My proof of identification is constructive. By definition,

Vik(SN) = ∆ik(SN)−E {∆ik(SN)|Xi} =
K

∑
`=0
{α0(k, `)Ui`(SN)} .

Under Assumption D, there exists an i ∈ IN such that E
{

Ui(SN)UT
i (SN)

}
is invertible.

Hence

α0k =
[
E
{

Ui(SN)UT
i (SN)

}]−1
[E {Ui(SN)Vik(SN)}] .

Moreover, β0(·, k) is also identified by

β0(Xi, k) = ∆ik(SN)−
K

∑
`=0

α0(k, `)φi`(SN).

�

A.5. Proof of Theorem 3. Note that when N is sufficient large, there is

max
i∈IN

∣∣∣det
(

E
[

Var {Φi(SN)|Xi}
])∣∣∣ > 0.

Then the identification result follows Theorem 2. �
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A.6. Lemma A.6. Suppose that Assumptions A through C hold. Thus, for any h, N ∈N,

s ∈ SN , i ∈ I and j ∈ N(i,h−1),∥∥∥σ∗j (s; θ0)− σ
(i,h)
j

(
s(i,h); θ0

)∥∥∥
1
≤ λ0 ×max

n∈Nj

∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

)∥∥∥
1

.

In particular ∥∥∥σ∗j (s; θ0)− σ
(i,h)
j

(
s(i,h); θ0

)∥∥∥
1
≤ 2λ0.

Proof. To begin with, let me first introduce some notation. Let ∆(α) = maxk`,m∈A |α(k, `)− α(m, `)|.

For any i ∈ IN and k ∈ A, let

Γik
(
Wi, {σj}j∈Ni , θ

)
=

exp
[

β(Xi, k) + ∑K
`=0
{

α(k, `)∑n∈Ni
σj`
}]

1 + ∑K
q=1 exp

[
β(Xi, q) + ∑K

`=0
{

α(q, `)∑n∈Ni
σj`
}] . (19)

Then, equation (4) can be written as

σ∗ik(SN ; θ0) = Γik

(
Wi, {σ∗j (SN ; θ0)}j∈Ni , θ0

)
.

Now, fix h, N, s. For any i ∈ I and j ∈ N(i,h−1),∥∥∥σ∗j (s; θ0)− σ
(i,h)
j

(
s(i,h); θ0

)∥∥∥
1

=
∥∥∥Γj

(
wj, {σ∗n (s; θ0)}n∈Nj ; θ0

)
− Γj

(
wj,
{

σ
(i,h)
n

(
s(i,h); θ0

)}
n∈Nj

; θ0

)∥∥∥
1

=
K

∑
k=0

∣∣∣∣∣∣ ∑
n∈Nj

K

∑
`=0

∂

∂σn`
Γjk(wj, {σ†

n}n∈Nj ; θ0)
{

σ∗n`(s; θ0)− σ
(i,h)
n`

(
s(i,h); θ0

)}∣∣∣∣∣∣ ,

where {σ†
n}n∈Nj is a choice probability profile between {σ∗n (s; θ0)}n∈Nj and

{
σ
(i,h)
n

(
s(i,h); θ0

)}
n∈Nj

.

Because of the definition of Γjk(wj, ΣN ; θ), for any n ∈ Nj

∂Γjk

∂σn`
= Γjk ∑

q 6=k

[
Γjq {α0(k, `)− α0(q, `)}

]
.

Moreover, (i) 0 ≤ Γjk ≤ 1; (ii) ∑K
k=0 Γjk = 1. Thus

K

∑
k=0

∣∣∣∣ ∂Γjk

∂σn`

∣∣∣∣ ≤ ∆̄(α0)×
K

∑
k=0

Γjk ∑
q 6=k

Γjq = ∆̄(α0)×
K

∑
k=0

{
Γjk
(
1− Γjk

)}
≤ ∆̄(α0)K

K + 1
.
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The last step comes from the fact that ∑K
k=0
{

Γjk
(
1− Γjk

)}
≤ K/(K + 1) for any Γj satisfying

(i) and (ii). Hence,

∥∥∥σ∗j (s; θ0)− σ
(i,h)
j

(
s(i,h); θ0

)∥∥∥
1

≤ ∑
n∈Nj

K

∑
`=0

K

∑
k=0

∣∣∣∣ ∂

∂σn`
Γjk(wj, Σ†

N ; θ0)

∣∣∣∣× ∣∣∣σ∗n`(s; θ0)− σ
(i,h)
n`

(
s(i,h); θ0

)∣∣∣
≤ ∆̄(α0)MK

K + 1
×max

n∈Nj

∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

)∥∥∥
1

= λ0 ×max
n∈Nj

∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

)∥∥∥
1

.

In particular, for any n ∈ IN∥∥∥σ∗n (s; θ0)− σ
(i,h)
n

(
s(i,h); θ0

) ∥∥∥
1
≤
∥∥∥σ∗n (s; θ0)

∥∥∥
1
+
∥∥∥σ

(i,h)
n

(
s(i,h); θ0

) ∥∥∥
1
= 2.

�

APPENDIX B.

In this section, I provide proofs for asymptotic analysis. As mentioned in Section 4.1, I add

subscript N to σ∗i (SN ; θ). Let L̂N(θ) =
1
N ∑N

i=1 ln fNi(ZNi, θ) and LN(θ) = E ln fN1(ZN1, θ).

Moreover, let f h
Ni(ZNi, θ) = ∏K

k=0 σ
(i,h)
ik

(
S(i,h)

N ; θ
)1(Yi=k)

and L̂h
N(θ) =

1
N ∑N

i=1 ln f h
Ni(ZNi, θ).

Let further ĜN(θ) = ∂L̂N(θ)/∂θ and Ĝh
N(θ) = ∂L̂h

N(θ)/∂θ.

As convention, for arbitrary ε > 0, let Bε(θ0) be an open ball centered at θ0 with ε radius

in the space Θ.

B.1. Lemma B.1. Assume (i) For any ε > 0, lim supN supθ∈Θ∩Bc
ε(θ0)
{LN(θ)− LN(θ0)} < 0;

(ii) L̂N(θ) converges uniformly in probability to LN(θ), i.e.

sup
θ∈Θ

∣∣∣L̂N(θ)− LN(θ)
∣∣∣ p→ 0;

(iii) L̂N(θ̂) ≥ supθ∈Θ L̂N(θ)− op(1). Then θ̂
p→ θ0.

Proof. The following proofs constructed are basically based on the proofs in Newey and

McFadden (1994), Theorem 2.1. First, by (ii) and (iii), with propability approaching one
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(w.p.a.1),

LN(θ̂) > L̂N(θ̂)− η/3 > L̂N(θ0)− 2η/3 > LN(θ0)− η

Thus for any η > 0, LN(θ̂) > LN(θ0)− η w.p.a.1.

Next, for any ε > 0, choose η = − 1
2 lim supN supθ∈Θ∩Bc

ε(θ0)
{LN(θ)− LN(θ0)}. It follows

that w.p.a.1,

LN(θ̂)− LN(θ0) >
1
2

lim sup
N

sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)} .

Because for sufficient large N,

sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)} − lim sup
N

sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)}

≤ −1
2

lim sup
N

sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)} ,

hence, for sufficient large N,

1
2

lim sup
N

sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)} ≥ sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)} .

Hence, w.p.a.1,

LN(θ̂)− LN(θ0) > sup
θ∈Θ∩Bc

ε(θ0)

{LN(θ)− LN(θ0)} ,

which implies that θ̂ ∈ Bε(θ0) w.p.a.1. Because ε can be arbitrarily small, θ̂
p→ θ0. �

Remark 1. In the standard case for ML estimation with LN(θ) = L(θ) (see e.g. Newey and

McFadden (1994), Theorem 2.1), condition (i) can be satisfied if one assume (1) Θ is compact; (2)

L(θ) is continuous in θ; and (3) θ0 is a unique maximizer of L(θ). It should also be noted that

condition (iii) is a non–trivial statement here, since θ̂ is a maximizer of L̂h
N , instead of L̂N .

B.2. Lemma 3. Suppose that Assumptions A, B, and I hold. Then,

L̂N(θ̂) ≥ sup
θ∈Θ

L̂N(θ)− op(1).
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Proof. Because θ̂ is a maximizer of L̂h
N(θ), it is sufficient to show that

sup
θ

∣∣∣L̂h
N(θ)− L̂N(θ)

∣∣∣→ 0.

Note that

sup
θ

∣∣∣L̂h
N(θ)− L̂N(θ)

∣∣∣ ≤ sup
θ

1
N

N

∑
i=1

∣∣∣ln f h
Ni(ZNi, θ)− ln fNi(ZNi, θ)

∣∣∣
≤ sup

θ

1
N

N

∑
i=1

K

∑
k=0

∣∣∣ln σ
(i,h)
ik

(
S(i,h)

N ; θ
)
− ln σ∗Nik(SN ; θ)

∣∣∣ .

By Taylor expansion, for any k ∈ A and i ∈ IN

∣∣∣ln σ
(i,h)
ik

(
S(i,h)

N ; θ
)
− ln σ∗Nik(SN ; θ)

∣∣∣ = ∣∣∣∣ 1σ̃ {σ
(i,h)
ik

(
S(i,h)

N ; θ
)
− σ∗Nik(SN ; θ)

}∣∣∣∣
≤ 1

σL

∣∣∣σ(i,h)
ik

(
S(i,h)

N ; θ
)
− σ∗Nik(SN ; θ)

∣∣∣ ≤ 2λh

σL
, a.s.

where σ̃ is some real value between σ
(i,h)
ik

(
S(i,h)

N ; θ
)

and σ∗Nik(SN ; θ), and the last two steps

come from Lemma C.1 and Lemma 2, respectively.

Hence

sup
θ

∣∣∣L̂h
N(θ)− L̂N(θ)

∣∣∣ ≤ 2(K + 1)λh

σL
, a.s.

By the choice of h and the fact that λ < 1,

sup
θ

∣∣∣L̂h
N(θ)− L̂N(θ)

∣∣∣ p→ 0.

�

Note that for the standard ML estimator, (iii) is a trivial statement and conditions (i) and (ii)

are sufficient for its consistency. Given Lemma 3, the following argument for the consistency

of MAL estimator can also apply to the ML estimator.

B.3. Lemma 4. Suppose that Assumptions A, B, and F through I hold. Then, For any ε > 0,

lim supN supθ∈Θ∩Bc
ε(θ0)
{LN(θ)− LN(θ0)} < 0.

Proof. Proof by contradiction. Because θ0 is identified (see Theorem 2), for any fixed N,

there is LN(θ)− LN(θ0) < 0 for all θ. Hence, lim supN supθ∈Θ∩Bc
ε(θ0)
{LN(θ)− LN(θ0)} ≤ 0.
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Suppose lim supN supθ∈Θ∩Bc
ε(θ0)
{LN(θ)− LN(θ0)} = 0 for some ε > 0. Then there exists a

sequence {Nt}∞
t=1, such that

sup
θ∈Θ∩Bc

ε(θ0)

{LNt(θ)− LNt(θ0)} → 0.

Because Θ is compact and by Lemma C.2, LNt(·) is continuous for every Nt, there exists a

sequence {θNt}∞
t=1 in Θ ∩ Bc

ε(θ0), such that supθ∈Θ∩Bc
ε(θ0)
{LNt(θ)− LNt(θ0)} = LNt(θNt)−

LNt(θ0). Note that LN(θ) = E
[
∑K

k=0
{

σ∗N1k(SN ; θ0) ln σ∗N1k(SN ; θ)
}]

. Therefore,

E

[
K

∑
k=0

σ∗N1k(SN ; θ0) {ln σ∗N1k(SN ; θNt)− ln σ∗N1k(SN ; θ0)}
]
→ 0.

Since ∑K
k=0 σ∗Nik(SN ; θ0)

{
ln σ∗N1k(SN ; θNt)− ln σ∗N1k(SN ; θ0)

}
≤ 0 a.s. under the standard

argument, then

K

∑
k=0

σ∗N1k(SN ; θ0) {ln σ∗N1k(SN ; θNt)− ln σ∗N1k(SN ; θ0)}
p→ 0.

By Taylor expansion,

K

∑
k=0

σ∗N1k(SN ; θ0) {ln σ∗N1k(SN ; θNt)− ln σ∗N1k(SN ; θ0)}

= −
K

∑
k=0

σ∗N1k(SN ; θ0)

σ2 {σ∗N1k(SN ; θNt)− σ∗N1k(SN ; θ0)}2

≤ −σL

K

∑
k=0
{σ∗N1k(SN ; θNt)− σ∗N1k(SN ; θ0)}2 ≤ 0

for some σ between σ∗N1k(SN ; θNt) and σ∗N1k(SN ; θ0), where the last step is because of Lemma

C.1. Hence,

−σL

K

∑
k=0

{
σ∗N1k(SN ; θNt)− σ∗N1k(SN ; θ0)

}2 p→ 0.

So σ∗N1k(SN ; θNt)− σ∗N1k(SN ; θ0)
p→ 0 for all k ∈ A.

Because of Assumption J, the distribution of SN is symmetric over players, then for any

η > 0, P
[∣∣σ∗Nik(SN ; θNt)− σ∗Nik(SN ; θ0)

∣∣ > η
]
= P

[∣∣σ∗N1k(SN ; θNt)− σ∗N1k(SN ; θ0)
∣∣ > η

]
→ 0.

27



Thus, by the identification analysis in Theorem 2, there is ‖θNt − θ0‖ → 0, which is a

contradiction to the definition of θNt . �

B.4. Proof of Theorem 4. In this proof, I’ll check the conditions in Lemma B.1. By Lemma

3 and 4, it suffices to show the uniform convergence of L̂N(θ) to LN(θ), i.e.

sup
θ∈Θ

∣∣∣L̂N(θ)− LN(θ)
∣∣∣ p→ 0.

By Lemma C.1 and C.2, ln fNi(ZNi, θ) is a bounded continuous function in θ. Since Θ

is compact, then FN = {ln fN1(ZN1, θ) : θ ∈ Θ} can be covered by a finite number of

ε–brackets. To apply the classical Glivenko-Cantelli argument, it suffices to show the

pointwise LLN, i.e. for any θ ∈ Θ

L̂N(θ)− LN(θ)
p→ 0.

Because

E
{

L̂N(θ)− LN(θ)
}2

= E

(
1
N

N

∑
i=1

[
ln fNi(ZNi, θ)−E {ln fNi(ZNi, θ)}

])2

=
1

N2 E

E


(

N

∑
i=1

[
ln fNi(ZNi, θ)−E {ln fNi(ZNi, θ)}

])2 ∣∣∣SN




=
1

N2 E

E


(

N

∑
i=1

[
ln fNi(ZNi, θ)−E {ln fNi(ZNi, θ)|SN}

])2 ∣∣∣SN




+
1

N2 E

E


(

N

∑
i=1

[
E [ln fNi(ZNi, θ)|SN ]−E {ln fNi(ZNi, θ)}

])2 ∣∣∣SN


 . (20)

Note that I suppress the zero terms in RHS of (20). Conditional on SN , {Yi}N
i=1 is independent

among each other. Then {ln fNi(ZNi, θ)}N
i=1 is also conditionally independent, so

E


(

N

∑
i=1

[
ln fNi(ZNi, θ)−E {ln fNi(ZNi, θ)|SN}

])2 ∣∣∣SN


=

N

∑
i=1

E

([
ln fNi(ZNi, θ)−E {ln fNi(ZNi, θ)|SN}

]2∣∣∣SN

)
.
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By Lemma C.1, ln fNi(·, θ) is a bounded function uniformly in N, i and θ. Thus

1
N2

N

∑
i=1

E

{
E

([
ln fNi(ZNi, θ)−E {ln fNi(ZNi, θ)|SN}

]2∣∣∣SN

)}
= o(1).

Moreover, by Lemma C.3

1
N2 E

E


(

N

∑
i=1

[
E {ln fNi(ZNi, θ)|SN} −E {ln fNi(ZNi, θ)}

])2 ∣∣∣SN


 = o(1).

Then E
{

L̂N(θ)− LN(θ)
}2
→ 0, so pointwise LLN obtains. �

B.5. Proof of Theorem 5.

Proof. First, by Lemma D.1 and the definition of θ̂, there is ĜN(θ̂) = op(1/
√

N). Hence,

op

(
1√
N

)
= ĜN(θ0) +

∂ĜN(θ
†)

∂θT (θ̂ − θ0), (21)

for some θ† between θ0 and θ̂. Then it suffices to show: (i)
√

N× ĜN(θ0)
d→ N(0, J0); and (ii)

∂ĜN(θ
†)

∂θT

p→ −J0.

Proofs of (i). Let ϕNi =
∂
∂θ ln fNi(ZNi, θ0), then ĜN(θ0) = ∑N

i=1 ϕNi. Because for any N and

i, θ0 maximizes the smooth function E {ln fNi(ZNi, θ)|SN} almost surely, then E (ϕNi|SN) =

0. Since ϕNi is conditionally independent across i. Then

E

[{
N

∑
i=1

ϕNi

}
×
{

N

∑
i=1

ϕT
Ni

} ∣∣∣SN

]
=

N

∑
i=1

E
(

ϕNi × ϕT
Ni

∣∣∣SN

)
= NJN(θ0).

For any κ ∈ RL, let ψN(κ, SN) = κT × {JN(θ0)}−1/2 , then there is

N−1E

[
ψN(κ, SN)

{
N

∑
i=1

ϕNi

}
×
{

N

∑
i=1

ϕT
Ni

}
ψT

N(κ, SN)
∣∣∣SN

]

= N−1ψN(κ, SN)
N

∑
i=1

E
(

ϕNi × ϕT
Ni

∣∣∣SN

)
ψT

N(κ, SN)

= ψN(κ, SN)JN(θ0)ψ
T
N(κ, SN) = κT × κ.
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Moreover, ‖ϕNi‖1 is bounded almost surely by Lemma D.2. Hence, by the Lindeberg-Feller

Theorem (see Van der Vaart (2000), page 20),

(
κTκN

)−1/2
ψN(κ, SN)

N

∑
i=1

ϕNi → N (0, 1).

Since κ is arbitrary in RL, by Cramer–Wold device,

{NJN(θ0)}−1/2
N

∑
i=1

ϕNi → N (0, 1L).

where 1L is the L by L identity matrix. Moreover, by Assumption L, (i) obtains.

To prove (ii), it is sufficient to show ∂ĜN(θ
†)/∂θT + JN(θ0)

p→ 0. By Lemma D.3, there is∣∣∂2 ln fNi(ZNi, θ)/∂θm∂θm′
∣∣ < δ3 almost surely for all N, i, m, m′. Moreover, by Lemma C.2

and D.3, ∂2 ln fNi(ZNi, θ)/∂θm∂θm′ is continuous and uniformly bounded (in θ). Hence by a

similar argument as the proofs in Theorem 4

sup
θ

[
ĜN(θ)

∂θT −E

{
∂2

∂θ∂θT ln fN1(ZN1, θ)

}]
p→ 0.

Moreover, by θ† p→ θ0, it follows that ∂ĜN(θ
†)/∂θT −E

{
∂2

∂θ∂θT ln fN1(ZN1, θ0)
} p→ 0.

By information matrix equality, JN(θ0) = −E
{

∂2

∂θ∂θT ln fN1(ZN1, θ0)
}

, then (ii) is proved.

�

B.6. Proof of Theorem 6.

Proof. Without causing any confusion in notation, I still denote my objective function as

LN(θ) in this semiparametric setup. Similarly, L0(θ) = lim supN→∞ LN(θ). First, similarly

as in the proof of consistency in parametric part, L̃N(θ̃) ≥ supθ∈ΘN
L̃N(θ)− op(1).

Then the consistency part can be proved by checking the conditions in Chen (2007),

Theorem 3.1, where the conditions 3.1∼ 3.4 can be easily verified by the properties of the

sieve I choose and similar arguments as in the proof of consistency in parametric setup.

Hence, it suffices to verify condition 3.5, the uniform convergence over sieves.

The Uniform LLN can obtain by using an empirical process argument, i.e. a class FN

of measurable functions f : X → R is said to be P–Glivenko–Cantelli class if the sample

path of PN f get uniformly closer to P f as N → ∞. For the analysis of empirical process,
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a key step of constructing probabilistic bounds for the maximal deviation of a sum of

independent stochastic process is called symmetrization, which requires the independence

of the process. In my case,
{

∑K
k=0
{

1 (Yi = k) ln σ̃∗Nik(SN ; θ)
}

: i = 1, · · · , N
}
⊆ FN is a

dependent sequence. However, the conditional independence obtains by conditioning on

S∞, the distribution of which does not affect the function class FN . The symmetrization

idea still go through after taking conditioning probability first and then reexpressing as

unconditional after the symmetrization. It could be verified that all the results for the

bounds of the RHS of the symmetrization inequality still hold in empirical process theory

(see Pollard (1990) for more details). Hence, it suffices to examine the class of functions

FN . Similarly as in parametric setup, it could be verified that FN can be Hölder class of

functions with (q + m)–th smoothness. Hence ULLN obtains.

The proof of convergence rate follows Shen and Wong (1994), Theorem 1. The conditions

C1 and C2 in the theorem can be verified by choosing α = β = 1 (in their notation), similarly

as in Example 2, Shen and Wong (1994). For condition C3, similarly as in Example 3, pick

r0 =
1

2(2q+2m+1) and r = 0+. Thus by their Theorem 1, the converge rate is N−
q+m

2q+2m+1 . Note

that the extra ln n factor in their Theorem 1 for the case r = r+0 can be removed when the

criterion difference is continuous in the Remark 4, which is exactly the case here. �

B.7. Proof of Theorem 7.

Proof. The proof follows the Theorem 1, Shen (1997). Similarly as in parametric setup, there

exists a constant δ7 ∈ R+, such that∥∥∥∥ln fNi(ZNi, θ)− ln fNi(ZNi, θ0)−
∂ ln fNi(ZNi, θ0)

∂θ(ν)

∥∥∥∥ ≤ δ7 (θ − θ0)
2 ,

where ν = θ − θ0. Then, to check the conditions in Theorem 1 of Shen (1997), a similar

argument follows as their Example 1(b). Note that, to satisfy the Condition B in Shen (1997),

I need impose a normalization on the parameter space, i.e.

Θ̃ =
{

θ′ : θ′ = ξ(θ); θ ∈ Θ
}

.

Then the objective function defined on Θ̃ satisfies all the conditions for Theorem 1 of Shen

(1997). �
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APPENDIX C.

C.1. Lemma C.1. Suppose Assumptions A, B, G and H hold, then there exists σL ∈ (0, 1)

such that

σ∗Nik(SN ; θ) ≥ σL a.s.

for all N, i, k and θ.

Proof. Fix arbitrary N ∈N, i ∈ IN , k ∈ A and θ ∈ Θ,

σ∗Nik(SN ; θ) = Γik

(
Wi, {σ∗Nj(SN ; θ)}j∈Ni ; θ

)
.

where the operator Γik is defined by equation (19). By definition, Γik(x, {σj}j∈Ni ; θ) is a

continuous and strictly positive function for any x ∈ Rp, choice probability profile {σj}j∈Ni ,

and θ ∈ Θ. Since X is bounded, 0 ≤ ∑j∈Ni
σ∗j`(SN ; θ) ≤ M for all i and ` ∈ A, and θ is in a

compact space Θ. Then Γik
(

x, {σj}j∈Ni , θ
)

is greater than some constant 0 < ck < 1, which

is independent of N, i, x and θ. Hence Γik

(
Wi, {σ∗Nj(SN ; θ)}j∈Ni ; θ

)
≥ ck > 0, a.s. Thus,

take σL = mink∈A ck. �

C.2. Lemma C.2. Suppose that Assumptions A through C hold. Hence, for all N ∈ N,

i ∈ I and z ∈ A×SN , fNi(z, ·) ∈ C∞(Θ).

Proof. By the definition of fNi, it is sufficient to show that for arbitrarily fixed N ∈N and

s ∈ SN , σ∗Ni(s; θ) ∈ C∞(Θ) for all i ∈ IN . Note that {σ∗Ni(s; θ)}N
i=1 is a solution in equation

system (4) with SN = s, and the solution is unique by Lemma 2. Let Σ is the space of choice

probability profile for all N players. Define a mapping Γ : Σ×Θ→ Σ such that

Γ(Σ; θ) =
(

Γ1
(
s, {σj}j∈N1 ; θ

)
, · · · , ΓN

(
s, {σj}j∈NN ; θ

) )T
, (22)

where Γi
(
s, {σj}j∈Ni ; θ

)
=
(

Γi0
(
s, {σj}j∈Ni ; θ

)
, · · · , ΓiK

(
s, {σj}j∈Ni ; θ

) )
. It is straightfor-

ward that Γ(Σ; θ) ∈ C∞
(

RN(K+1) ×Θ; RN(K+1)
)

, then by implicit function theorem σ∗Ni(s; θ) ∈

C∞ (Θ) for all i ∈ IN . �
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C.3. Lemma C.3. Suppose that Assumptions A, B, G, H and I hold, then

1
N2 E


(

N

∑
i=1

[
E {ln fNi(ZNi, θ)|SN} −E {ln fNi(ZNi, θ)}

])2
 = o(1).

Proof. Let h∗ ∈N. Then by a similar argument as in Lemma 2, for all i,

sup
θ

∣∣∣σ∗Nik(SN ; θ)− σ
(i,h∗)
ik

(
S(i,h∗)

N ; θ
)∣∣∣ ≤ 2λh∗ , a.s.

Thus by Taylor expansion,

sup
θ

∣∣∣∣∣ K

∑
k=0

σ∗Nik(SN ; θ0) ln σ∗Nik(SN ; θ)−
K

∑
k=0

σ
(i,h∗)
ik

(
S(i,h∗)

N ; θ0

)
ln σ

(i,h∗)
ik

(
S(i,h∗)

N ; θ
)∣∣∣∣∣

≤ 2(1− ln σL)(K + 1)λh∗ , a.s.

Thus,

sup
θ

∣∣∣E {ln fNi(Zni), θ)|SN} −E
{

ln fNi(Zni), θ)
∣∣S(i,h∗)

N

}∣∣∣
≤ sup

θ

∣∣∣∣∣ K

∑
k=0

σ∗Nik(SN ; θ0) ln σ∗Nik(SN ; θ)−
K

∑
k=0

σ
(i,h∗)
ik

(
S(i,h∗)

N ; θ0

)
ln σ

(i,h∗)
ik

(
S(i,h∗)

N ; θ
)∣∣∣∣∣

+ sup
θ

∫ ∣∣∣∣∣ K

∑
k=0

σ∗Nik(SN ; θ0) ln σ∗Nik(SN ; θ)−
K

∑
k=0

σ
(i,h∗)
ik

(
S(i,h∗)

N ; θ0

)
ln σ

(i,h∗)
ik (S(i,h∗)

N ; θ)

∣∣∣∣∣ dP
SN |S

(i,h∗)
N

≤ 4(1− ln σL)(K + 1)λh∗ , a.s.. (23)

Because

E


(

N

∑
i=1

[
E {ln fNi(ZNi, θ)|SN} −E {ln fNi(ZNi, θ)}

])2


= E


(

N

∑
i=1

[
E
{

ln fNi(ZNi, θ)
∣∣SN

}
−E

{
ln fNi(ZNi, θ)

∣∣S(i,h∗)
N

} ])2


+ E


(

N

∑
i=1

[
E
{

ln fNi(ZNi, θ)
∣∣S(i,h∗)

N

}
−E {ln fNi(ZNi, θ)}

])2
 .

Note that I suppress zero terms in the RHS of above equation.
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By equation (23), and by Lemma C.1, ln fNi(·, θ) is a bounded function uniformly in N, i

and θ. Then,

E


(

N

∑
i=1

[
E
{

ln fNi(ZNi, θ)
∣∣SN

}
−E

{
ln fNi(ZNi, θ)

∣∣S(i,h∗)
N

} ])2
 = O

(
N2λ2h∗

)
,

and

E


(

N

∑
i=1

[
E
{

ln fNi(ZNi, θ)
∣∣S(i,h∗)

N

}
−E {ln fNi(ZNi, θ)}

])2


=
N

∑
i=1

∑
j∈N(i,h)

Cov
[
E
{

ln fNi(ZNi, θ)
∣∣S(i,h∗)

N

}
, E
{

ln fNj(ZNj, θ)
∣∣S(i,h∗)

N

} ]

+
N

∑
i=1

Var
[
E
{

ln fNi(ZNi, θ)
∣∣S(i,h∗)

N

} ]
= O

(
NMh∗

)
+ O(N)

Choose h∗ = b ln N
ln M for some b ∈ (0, 1). Then h∗ → ∞ as N → ∞ and Mh∗ = o(N). Note that

h∗ is different from the h in the MAL estimator and only serves for this proof. Hence,

1
N2 E


(

N

∑
i=1

[
E {ln fNi(ZNi, θ)|SN} −E {ln fNi(ZNi, θ)}

])2
 = o(1).

�

APPENDIX D.

D.1. Lemma D.1. Suppose that Assumptions A through C, G and H hold.

sup
θ∈Θ

∥∥∥ĜN(θ)− Ĝh
N(θ)

∥∥∥ = op

(
1√
N

)
Proof. First, because Lemma E.3,

sup
θ∈Θ

∥∥∥ĜN(θ)− Ĝh
N(θ)

∥∥∥
1
≤ sup

θ∈Θ

1
N

N

∑
i=1

K

∑
k=0

∥∥∥∥∥∂ ln σ∗Nik(SN ; θ)

∂θ
−

∂ ln σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

= Op(hλh).

Since λ < 1 and h ∝ Nω for some ω > 0, then

hλh = o
(

1√
N

)
.
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D.2. Lemma D.2. Suppose that Assumptions A, B, G H and I hold. Then there exists a

C1 ∈ R+, such that

sup
N

max
i∈IN

sup
θ∈Θ

∥∥∥∥∂ ln σ∗Ni(SN ; θ)

∂θ

∥∥∥∥
1
≤ C1, a.s.

and

sup
N

max
i∈IN

sup
θ∈Θ

∥∥∥∥∂σ∗Ni(SN ; θ)

∂θ

∥∥∥∥
1
≤ C1, a.s.

Proof. First, I derive an expression for ∂
∂θ σ∗Ni(SN ; θ), from which I obtain a uniform bound

over N, i and θ. For all i ∈ IN , k ∈ A and m = 1, · · · , L,

∂σ∗Nik(SN ; θ)

∂θm
=

∂Γik

(
Wi, {σ∗Nj(SN , θ)}j∈Ni ; θ

)
∂θm

+ ∑
j∈Ni

K

∑
`=0

∂Γik

(
Wi, {σ∗Nj(SN , θ)}j∈Ni ; θ

)
∂σ∗Nj`

×
∂σ∗Nj`(SN ; θ)

∂θm

 . (24)

Let σ∗N(SN ; θ) =
(
σ∗N1(SN ; θ)>, · · · , σ∗NN(SN ; θ)>

)> and ζ(SN , θ) = ∂σ∗N(SN ; θ)/∂θm. Let

further Λ(SN , θ) = ∂Γ(σ∗N(SN ; θ); θ)/∂θm and D(SN , θ) = ∂Γ(σ∗N(SN ; θ); θ)/∂Σ, where Γ is

defined in equation (22). Thus, equation (24) becomes{
1N(K+1) − D(SN , σ∗N ; θ)

}
ζ(SN , θ) = Λ(SN , θ).

Thus

ζ(SN , θ) =
{

1N(K+1) − D(SN , σ∗N ; θ)
}−1

Λ(SN , θ) =

{
∞

∑
t=0

Dt(SN , σ∗N(SN ; θ); θ)

}
Λ(SN , θ),

where the last step comes from Lemma E.1.

For each i ∈ IN and k ∈ A, let ιik be an N(K + 1) dimensional vector with value one only

at the [(i− 1)(K + 1) + k + 1]–th component and zero elsewhere. Hence

K

∑
k=0

∣∣∣∣∂σ∗Nik(SN ; θ)

∂θm

∣∣∣∣ ≤ K

∑
k=0

∣∣∣∣∣ ∞

∑
t=0

ι′ikDt(SN , σ∗N ; θ)Λ(SN , θ)

∣∣∣∣∣ ≤ δ2

K

∑
k=0

∞

∑
t=0

λt,
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where the last step comes from Holder inequality, Lemma C.1 and Lemma E.2. Thus

K

∑
k=0

∣∣∣∣∂ ln σ∗Nik(SN ; θ)

∂θm

∣∣∣∣ ≤ δ2(K + 1)
1− λ

. (25)

Moreover, by Lemma C.1,∣∣∣∣∂ ln σ∗Nik(SN ; θ)

∂θm

∣∣∣∣ ≤ 1
σL

∣∣∣∣∂σ∗Nik(SN ; θ)

∂θm

∣∣∣∣ ≤ δ2(K + 1)
σL(1− λ)

. (26)

To complete the proof, just note that the RHS’s of (25) and (26) do not depend on N, i or

θ. �

D.3. Lemma D.3. Suppose that Assumptions A, B , G, H and I hold. Then there exists a

δ4 ∈ R+, such that

sup
N

max
i∈IN

sup
θ∈Θ

∑
k∈A

∥∥∥∥∥∂2σ∗Nik(SN ; θ)

∂θ∂θT

∥∥∥∥∥
1

≤ δ4, a.s.

Proof. It is sufficient to show that for any m, m′ = 1, · · · , L, then there exists a δ′4 ∈ R+, such

that

sup
N

max
i∈IN

sup
θ∈Θ

∑
k∈A

∣∣∣∣∂2σ∗Ni(SN ; θ)

∂θm∂θm′

∣∣∣∣ ≤ δ′4, a.s.

Note that for any m, m′ = 1, · · · , L,

∂2σ∗Nik(SN ; θ)

∂θm∂θm′
=

∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂θm∂θm′
+ ∑

j∈Ni

K

∑
`=0

∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂θm∂σ∗j`
×

∂σ∗Nj`

∂θm

+ ∑
j∈Ni

K

∑
`=0

{
∂Γik(Wi, Σ∗N(SN ; θ), θ)

∂σ∗Nj`
×

∂2σ∗Nj`

∂θm∂θm′

}

+ ∑
j∈Ni

K

∑
`=0

{
∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂σ∗Nj`∂θm′
×

∂σ∗Nj`

∂θm

}

+ ∑
j,j′∈Ni

∑
`,`′∈A

{
∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂σ∗Nj`∂σ∗Nj′`′

∂σ∗Nj`

∂θm

∂σ∗Nj′`′

∂θm′

}
,

which can also be written as{
1N(K+1) − D(SN , σ∗N ; θ)

}
×ΨN(θ) = TN(θ)
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where ΨN(θ) and TN(θ) are N(K + 1) dimensional vectors. ΨN’s (i− 1)(K + 1) + k + 1–the

component is given by follows

ΨN =
∂2σ∗ik(SN , θ)

∂θm∂θm′
.

TN’s (i− 1)(K + 1) + k + 1–th component is

TNik(θ) =
∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂θm∂θm′
+ ∑

j∈Ni

K

∑
`=0

∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂θm∂σ∗Nj`
×

∂σ∗Nj`

∂θm

+ ∑
j∈Ni

K

∑
`=0

{
∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂σ∗Nj`∂θm′
×

∂σ∗Nj`

∂θm

}

+ ∑
j,j′∈Ni

∑
`,`′∈A

{
∂2Γik(Wi, Σ∗N(SN ; θ), θ)

∂σ∗Nj`∂σ∗Nj′`′

∂σ∗Nj`

∂θm

∂σ∗Nj′`′

∂θm′

}

= TNik1(θ) + TNik2(θ) + TNik3(θ) + TNik4(θ),

Now I am going to show

max
i

max
k
|TNik(θ)| ≤ δ5

for some δ5 ∈ R+. Since for any k, ` ∈ A and q ∈ A/{0},

∂2Γik

∂βq∂θm′
= −

∂σ∗Niq

∂θm′
σ∗NikXiq +

∂σ∗Nik
∂θm′

{
1(q = k)− σ∗Niq

}
Xiq,

∂2 ln Γik

∂α(q, `)∂θm′
=
{

1(q = k)− σ∗Niq

}
σ∗Nik ∑

j∈Ni

σ∗Nj`

∂θm′
−

∂σ∗Niq

∂θm′
σ∗Nik ∑

j∈Ni

σ∗j`

+
{

1(q = k)− σ∗Niq

} ∂σ∗Nik
∂θm′

∑
j∈Ni

σ∗Nj`.

By Lemma D.2 and Assumption G,

sup
N

max
i∈IN

∑
k∈A
|TNik1(θ)| ≤ 2(K + 1)δ2C1.

Similarly, it can be shown that

sup
N

max
i∈IN

∑
k∈A
|TNik2(θ)| ≤ 2λ(K + 1)δ2C1,

sup
N

max
i∈IN

∑
k∈A
|TNik3| (θ) ≤ 2λ(K + 1)δ2C1.
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For term TNik4(θ), because for any j ∈ Ni,

∂Γik(Wi, {σ∗Nj(SN ; θ)}j∈Ni , θ)

∂σj`
= σ∗Nik ∑

q 6=k

[
σ∗Niq {α(k, `)− α(q, `)}

]
.

Then for all j, j′ ∈ Ni

∂2Γik(Wi, {σ∗Nj(SN ; θ)}j∈Ni , θ)

∂σj`∂σj′,`′
= σ∗Nik

(
∑
q 6=k

[
σ∗Niq {α(k, `)− α(q, `)}

])2

+ σ∗Nik ∑
q 6=k

[(
σ∗Niq ∑

q′ 6=q

[
σ∗Niq′

{
α(q, `)− α(q′, `)

}])
{α(k, `)− α(q, `)}

]
.

Thus

K

∑
k=0

∣∣∣∣∣∂
2Γik(Wi, {σ∗Nj(SN ; θ)}j∈Ni , θ)

∂σj`∂σj′,`′

∣∣∣∣∣
≤ ∆̄2(α)

K

∑
k=0

σ∗Nik ∑
q 6=k

(
σ∗Niq

)2
+ ∆̄2(α)

K

∑
k=0

[
σ∗Nik

{
∑
q 6=k

σ∗Niq

(
1− σ∗Niq

)}]

= ∆̄2(α)
K

∑
k=0

{
σ∗Nik

(
∑
q 6=k

σ∗Niq

)}
≤ ∆̄2(α)× K

K + 1
.

It follows that

∑
k∈A
|TNik4(θ)| ≤ ∆̄2(α)× K

K + 1 ∑
k∈A

∑
j,j′∈Ni

∑
`,`′∈A

∣∣∣∣∣∂σ∗Nj`

∂θm

∂σ∗Nj′`′

∂θm′

∣∣∣∣∣
≤ ∆̄2(α)× K

K + 1
(K + 1)2M2 = λ2 × (K + 1)3

K
.

From above analysis, there exists a constant δ5 ∈ R+, which does not depend on N, i or θ,

such that

max
i

max
k
|TNik(θ)| ≤ δ5.
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Therefore,

∑
k∈A

∣∣∣∣∣∂2σ∗ik(SN , θ)

∂θm∂θm′

∣∣∣∣∣ = ∑
k∈A

∣∣∣∣ι′ik {1N(K+1) − D(SN , σ∗N ; θ)
}−1

TN(θ)

∣∣∣∣
≤ δ5 ∑

k∈A

∞

∑
t=0

∥∥ι′ikDt(SN , θ)
∥∥

1 ≤
δ5(K + 1)

1− λ
.

Since the RHS of above inequality does not depend on N, i an θ, so the lemma is proved. �

APPENDIX E.

E.1. Lemma E.1. Suppose Assumptions A, B and I hold, then for any choice probability

profile ΣN , s ∈ SN , and arbitrary real vector µ ∈ RN(K+1),{
1N(K+1) − T(s, ΣN ; θ)

}−1
µ =

∞

∑
t=0
{T(s, ΣN ; θ)µ} ,

and ∥∥∥∥{1N(K+1) − T(s, ΣN ; θ)
}−1

µ

∥∥∥∥
1
≤ ‖µ‖1

1− λ
.

where λ = ∆̄(α)MK/(1 + K).

Proof. By the definition of D(s, ΣN ; θ),

‖D(s, ΣN ; θ)µ‖1 ≤ ∑
i∈IN

K

∑
k=0

∑
j∈Ni

K

∑
`=0

∣∣∣∣∂Γik(wi, ΣN ; θ)

∂σj`

∣∣∣∣× ∣∣∣µ(j−1)(K+1)+`+1

∣∣∣ ,

and from the proof in Lemma A.6,

∂

∂σj`
Γik(wi, ΣN ; θ) = Γik ∑

q 6=k

[
Γiq {α(k, `)− α(q, `)}

]
.

Thus

‖D(s, ΣN ; θ)µ‖1 ≤ ∆̄(α) ∑
i∈IN

K

∑
k=0

∑
j∈Ni

{∣∣∣∣∣Γik ∑
q 6=k

Γiq

∣∣∣∣∣× K

∑
`=0

∣∣∣µ(j−1)(K+1)+`+1

∣∣∣}

≤ ∆̄(α)K
K + 1 ∑

i∈IN

∑
j∈Ni

K

∑
`=0

∣∣∣µ(j−1)(K+1)+`+1

∣∣∣ ≤ ∆̄(α)MK
K + 1

|µ|1 = λ ‖µ‖1 . (27)

39



Next, I’ll show
∥∥DT+1(s, ΣN ; θ)µ

∥∥
1 → 0 using equation (27). Because∥∥∥DT+1(s, ΣN ; θ)µ
∥∥∥

1
≤ λ

∥∥∥DT(s, ΣN ; θ)µ
∥∥∥

1
≤ λT+1‖µ‖1,

then limT→∞
∥∥DT+1(s, ΣN ; θ)µ

∥∥
1 = 0. Hence, for any µ ∈ RN(K+1), there is

{
1N(K+1) − D(s, ΣN ; θ)

}
×

∞

∑
t=0

Dt(s, ΣN ; θ)× µ

=

{
1N(K+1) − lim

T→∞
DT+1(s, ΣN ; θ)

}
× µ = µ,

which implies that

∞

∑
t=0

Dt(s, ΣN ; θ)× µ =
{

1N(K+1) − D(s, ΣN ; θ)
}−1
× µ.

Moreover∥∥∥∥{1N(K+1) − D(s, ΣN ; θ)
}−1
× µ

∥∥∥∥
1
=

∥∥∥∥∥ ∞

∑
t=0

Dt(s, ΣN ; θ)× µ

∥∥∥∥∥
1

≤
∞

∑
t=0

∥∥Dt(s, ΣN ; θ)× µ
∥∥

1 ≤
∞

∑
t=0

λt‖µ‖1 =
‖µ‖1

1− λ
.

�

E.2. Lemma E.2. Suppose Assumptions A, B, and G hold, then there exists δ2 ∈ R+ such

that for all θ and m = 1, · · · , L,

sup
s∈SN

∣∣∣∣∂ ln Γik(wi, ΣN ; θ)

∂θm

∣∣∣
ΣN=Σ∗N(s;θ)

∣∣∣∣ ≤ δ2.

Proof. Since for arbitrary s ∈ SN , choice probability profile ΣN and θ ∈ Θ, consider

Γik(wi, ΣN ; θ) for k ∈ A and i ∈ I .

∂

∂βq
ln Γik(wi, ΣN ; θ) =

{
1(q = k)− Γiq

}
xi,

∂

∂α(q, `)
ln Γik(wi, ΣN ; θ) =

{
1(q = k)− Γiq

}
∑

j∈Ni

σj`,
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and q ∈ A/{0}. Furthermore, by Assumption G, there exists C0 ∈ R+ such that ‖x‖ ≤ C0

for all x ∈ X . Hence∣∣∣∣∂ ln Γik(wi, ΣN ; θ)

∂βq

∣∣∣∣ ≤ C0,
∣∣∣∣∂ ln Γik(wi, ΣN ; θ)

∂α(q, `)

∣∣∣∣ ≤ M.

Take δ2 = C0 + M, thus, for any m = 1, · · · , L

sup
s∈SN

sup
ΣN

∣∣∣∣∂ ln Γik(wi, ΣN ; θ)

∂θm

∣∣∣∣ ≤ δ2,

which implies that

sup
s∈SN

∣∣∣∣∂ ln Γik(wi, ΣN ; θ)

∂θm

∣∣∣
ΣN=Σ∗N(s;θ)

∣∣∣∣ ≤ δ2.

�

E.3. Lemma E.3. Suppose that Assumptions A through C and G hold. Then

sup
θ∈Θ

sup
i∈IN

K

∑
k=0

∥∥∥∥∥∂σ∗Nik(SN ; θ)

∂θ
−

∂σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

= Op(hλh),

and

sup
θ∈Θ

sup
i∈IN

K

∑
k=0

∥∥∥∥∥∂ ln σ∗Nik(SN ; θ)

∂θ
−

∂ ln σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

= Op(hλh).

Proof. First, for any q ∈ A\{0} and ` ∈ A, consider any j ∈ N(i,h)∥∥∥∥ ∂

∂θ
σ∗Njk(SN ; θ)− ∂

∂θ
σ
(i,h)
Njk (SN ; θ)

∥∥∥∥
1
≤
∥∥∥∥ ∂

∂θ
Γjk(Wj, Σ∗N ; θ)− ∂

∂θ
Γjk(Wj, Σ(i,h)

N ; θ)

∥∥∥∥
1

+

∥∥∥∥∥∥ ∑
n∈Nj

∑
`∈A

{
∂

∂σNn`
Γjk(Wj, Σ∗N ; θ)×

∂σ∗Nn`
∂θ
− ∂

∂σNn`
Γjk(Wj, Σ(i,h)

N ; θ)×
∂σ

(i,h)
Nn`

∂θ

}∥∥∥∥∥∥
1

≤
∥∥∥∥ ∂

∂θ
Γjk(Wj, Σ∗N ; θ)− ∂

∂θ
Γjk(Wj, Σ(i,h)

N ; θ)

∥∥∥∥
1

+

∥∥∥∥∥∥ ∑
n∈Nj

∑
`∈A

{
∂

∂σNn`
Γjk(Wj, Σ∗N ; θ)− ∂

∂σNn`
Γjk(Wj, Σ(i,h)

N ; θ)

}
×

∂σ∗Nn`
∂θ

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥ ∑
n∈Nj

∑
`∈A

∂

∂σNn`
Γjk(Wj, Σ(i,h)

N ; θ)×
{

∂σ∗Nn`
∂θ
−

∂σ
(i,h)
Nn`

∂θ

}∥∥∥∥∥∥
1

, a.s.
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where Σ(i,h)
N = Σ(i,h)

N (S(i,h)
N ; θ). Furthermore, by Lemma D.2 and E.4,

K

∑
k=0

∥∥∥∥ ∂

∂θ
σ∗Njk(SN ; θ)− ∂

∂θ
σ
(i,h)
Njk (SN ; θ)

∥∥∥∥
1

≤ (K + 1)C2 × sup
θ∈Θ

max
n∈N(j,1)

∥∥∥σ∗Nn − σ
(i,h)
Nn

∥∥∥
1
+ (K + 1)C1C3 × sup

θ∈Θ

∥∥∥σ∗Nj − σ
(i,h)
Nj

∥∥∥
1

+ max
n∈Nj

K

∑
`=0

∥∥∥∥∥∂σ∗Nn`
∂θ
−

∂σ
(i,h)
Nn`

∂θ

∥∥∥∥∥
1

×
K

∑
k=0

∑
n∈Nj

∣∣∣∣ ∂

∂σNn`
Γjk(Wj, Σ(i,h)

N ; θ)

∣∣∣∣ , a.s.

By the proof in Lemma A.6, the last term is bounded by

λ×max
n∈Nj

K

∑
`=0

∥∥∥∥∥∂σ∗Nn`
∂θ
−

∂σ
(i,h)
Nn`

∂θ

∥∥∥∥∥
1

, a.s.

Hence,

K

∑
k=0

∥∥∥∥ ∂

∂θ
σ∗Njk(SN ; θ)− ∂

∂θ
σ
(i,h)
Njk (SN ; θ)

∥∥∥∥
1

≤ C4 × sup
θ∈Θ

max
n∈N(j,1)

∥∥∥σ∗Nn − σ
(i,h)
Nn

∥∥∥
1
+ λ×max

n∈Nj

K

∑
`=0

∥∥∥∥∥∂σ∗Nn`
∂θ
−

∂σ
(i,h)
Nn`

∂θ

∥∥∥∥∥
1

, a.s.

where C4 = (K + 1)× (C2 + C1C3). Since
∥∥∥σ∗Nn − σ

(i,h)
Nn

∥∥∥
1
≤ 2 almost surely for all N, n and

θ, and by Lemma D.2, maxn∈Nj

∥∥∥∂σ∗Nn/∂θ − ∂σ
(i,h)
Nn /∂θ

∥∥∥
1
≤ 2C1, almost surely. Then for all

j ∈ N(i,h),
K

∑
k=0

∥∥∥∥∥∥
∂σ∗Njk(SN ; θ)

∂θ
−

∂σ
(i,h)
Njk (SN ; θ)

∂θ

∥∥∥∥∥∥
1

≤ 2C4 + 2λC1, a.s.

From the proof of A.2, for all j ∈ N(i,h−1), supθ∈Θ maxn∈N(j,1)

∥∥∥σ∗Nn − σ
(i,h)
Nn

∥∥∥
1
≤ 2λ almost

surely, then

K

∑
k=0

∥∥∥∥∥∥
∂σ∗Njk(SN ; θ)

∂θ
−

∂σ
(i,h)
Njk (SN ; θ)

∂θ

∥∥∥∥∥∥
1

≤ 2C4λ + λ× (2C4 + 2λC1) , a.s.
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By induction method, for all j ∈ N(i,h−d) (d ∈N; d ≤ h.), there is

K

∑
k=0

∥∥∥∥∥∥
∂σ∗Njk(SN ; θ)

∂θ
−

∂σ
(i,h)
Njk (SN ; θ)

∂θ

∥∥∥∥∥∥
1

≤ 2λd (λC1 + (d + 1)C4) , a.s.

Note that i ∈ N(i,0), then

K

∑
k=0

∥∥∥∥∥∂σ∗Nik(SN ; θ)

∂θ
−

∂σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

≤ 2λh (λC1 + (h + 1)C4) , a.s.

K

∑
k=0

∥∥∥∥∥∂ ln σ∗Nik(SN ; θ)

∂θ
−

∂ ln σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

≤
K

∑
k=0

{∥∥∥∥∥∂σ∗Nik(SN ; θ)

∂θ
−

∂σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

×
∣∣∣∣ 1
σ∗Nik(SN ; θ)

∣∣∣∣
}

+
K

∑
k=0

{∥∥∥∥∥∂σ
(i,h)
ik (S(i,h)

N ; θ)

∂θ

∥∥∥∥∥
1

×
∣∣∣∣∣σ∗Nik(SN ; θ)− σ

(i,h)
ik (S(i,h)

N ; θ)

σ∗Nik(SN ; θ)σ
(i,h)
ik (S(i,h)

N ; θ)

∣∣∣∣∣
}

≤ 2λh (λC1 + (h + 1)C4)

σL
+

2C1λh+1

σ2
L

, a.s.

�

E.4. Lemma E.4. Suppose that Assumptions A through C and G hold. Then there exist

C2, C3 ∈ R+, such that for all N, i, k and arbitrary two strategy profile ΣN = {σn}n∈I ,

Σ′N = {σ′n}n∈I .

sup
θ∈Θ

∥∥∥∥∂Γik(Wi, ΣN ; θ)

∂θ
− ∂Γik(Wi, Σ′N ; θ)

∂θ

∥∥∥∥
1
≤ C2 × sup

θ∈Θ
max

j∈N(i,1)

∥∥∥Γj − Γ′Nj

∥∥∥
1

, a.s.

and

sup
θ∈Θ

∣∣∣∣∣ ∑j∈Ni

∑
`∈A

{
∂Γik(Wi, ΣN ; θ)

∂σNj`
− ∂Γik(Wi, Σ′N ; θ)

∂σNj`

}∣∣∣∣∣ ≤ C3 × sup
θ∈Θ

∥∥Γi − Γ′Ni
∥∥

1 , a.s.

where Γ′Ni = Γi(Wi, Σ′N ; θ).
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Proof. First, for any q ∈ A\{0} and ` ∈ A,∣∣∣∣∂Γik(Wi, ΣN ; θ)

∂α(q, `)
− ∂Γik(Wi, Σ′N ; θ)

∂α(q, `)

∣∣∣∣
=

∣∣∣∣∣Γik
{

1(q = k)− Γiq
}

∑
j∈Ni

Γj` − Γ′Nik

{
1(q = k)− Γ′Niq

}
∑

j∈Ni

Γ′Nj`

∣∣∣∣∣
≤ M×

∣∣Γik − Γ′Nik
∣∣+ M×

∣∣∣Γiq − Γ′Niq

∣∣∣+ M×max
j∈Ni

∣∣∣Γj` − Γ′Nj`

∣∣∣ ,

almost surely, where the last step is because 0 ≤ Γjk ≤ 1 for all N, i, k and Assumption B.

Thus ∣∣∣∣∂Γik(Wi, ΣN ; θ)

∂α(q, `)
− ∂Γik(Wi, Σ′N ; θ)

∂α(q, `)

∣∣∣∣ ≤ 3M× max
j∈N(i,1)

∥∥∥Γj − Γ′Nj

∥∥∥
1

, a.s.

Second, for any q = 1, · · · , p∥∥∥∥∂Γik(Wi, ΣN ; θ)

∂β`′
− ∂Γik(Wi, Σ′N ; θ)

∂βq

∥∥∥∥
1

≤
∣∣∣Γik

{
1(q = k)− Γiq

}
− Γ′Nik

{
1(q = k)− Γ′Niq

}∣∣∣× ‖Xi‖1

≤ 2C0 ×max
i
‖Γi − Γi‖1 ,

almost surely. Then let C2 = L×max{3M, 2C0}, there is

sup
θ∈Θ

∥∥∥∥∂Γik(Wi, ΣN ; θ)

∂θ
− ∂Γik(Wi, Σ′N ; θ)

∂θ

∥∥∥∥
1
≤ C2 × sup

θ∈Θ
max

j∈N(i,1)

∥∥∥Γj − Γ′Nj

∥∥∥
1

, a.s.

For the second part of the lemma,

sup
θ∈Θ

∣∣∣∣∣ ∑j∈Ni

∑
`∈A

{
∂Γik(Wi, ΣN ; θ)

∂σNj`
− ∂Γik(Wi, Σ′N ; θ)

∂σNj`

}∣∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∣ ∑j∈Ni

∑
`∈A

∑
q 6=k

[(
ΓikΓiq − Γ′NikΓ′Niq

)
{α(k, `)− α(q, `)}

]∣∣∣∣∣
≤ MK(K + 1)∆̄(α)× sup

θ∈Θ
‖Γi − Γ′Ni‖1,

almost surely. Then take C3 = MK(K + 1)∆̄(α). �
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