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Abstract

Notions of cause and e§ect are fundamental to economic explanation. Despite the immediate
intuitive content of price e§ects, income e§ects, and the like, rigorous foundations justifying
well-posed discussions of cause and e§ect in the wide range of settings relevant to economics
are still lacking. We illustrate the need for these foundations using the familiar context of
an Nbidder private-value auction, posing a variety of relevant causal questions that cannot
be formally addressed within existing causal frameworks. We extend the causal frameworks
of Pearl (2000) and White and Chalak (2009) to introduce topological settable systems, a
causal framework capable of delivering the missing answers. In particular, our framework can
accommodate choices that are elements of general function spaces. Our analysis suggests how
topological settable systems can be applied to support causal discourse in more general games
and in other areas of economic inquiry.
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1 Introduction and Motivation

Causal discourse ñ that is, discussion of cause and e§ect ñ is fundamental to economic explana-

tion. It appears naturally and unselfconsciously throughout Adam Smithís An Inquiry into the

Nature and Causes of the Wealth of Nations (1776) and in all the major economic contributions

of the nineteenth century (e.g., Mill, 1848; Marshall, 1890) and a good part of the twentieth

(e.g., Hicks, 1939; Samuelson, 1947). As twentieth-century economists began to think carefully

about systems of structural or simultaneous equations, work began on formalizing notions of
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causality and structure. Classical e§orts in this area include the work of Haavelmo (1943, 1944),

Marschak (1950), Simon (1953), Strotz and Wold (1960), and Granger (1969). Unfortunately,

no clear consensus emerged from this work. Causal notions remained murky, in part due to the

causal paradoxes associated with simultaneity, which nevertheless plays an indispensable role in

describing economic phenomena. This lack of clarity contributed to economists tending to avoid

not only formal discussion of causality, but even informal discussion, as Hoover (2004) documents.

Nevertheless, causal discourse is so central to economics and the social sciences and so intuitive

that explicit causal discussion has re-emerged in the last few decades, together with renewed and

deep consideration of causal foundations (e.g., Holland, 1986; Heckman, 2005).

This renewal has led to signiÖcant advances, particularly in program and policy evaluation.1

Nevertheless, causal discourse still occupies an ambivalent status in a variety of areas of economics.

Although it is intuitive and natural to speak about income e§ects and price e§ects and the like,

rigorous foundations justifying well-posed discussions of cause and e§ect in the wide range of

settings relevant to economics, including game theory, are still lacking. Intuition can only go

so far. Without Örm foundations, it is easy to go astray when describing economic theories,

when analyzing the identiÖcation or estimation of causal e§ects (particularly in the increasingly

sophisticated structures analyzed nowadays), and especially when attempting to draw policy

conclusions or economic insight from model estimates. There remains a clear need to Önd broadly

applicable rigorous foundations for causal discourse in economics.

We demonstrate this need for a suitable causal framework using the familiar context of an

Nbidder private-value auction, a game of incomplete information (Hars·nyi, 1967). This game

is simple enough to allow straightforward analysis, yet rich enough for us to illustrate all of

the central issues by posing a variety of relevant causal questions. As we discuss, these basic

questions cannot be addressed using existing causal frameworks. We then provide a framework

that delivers the missing answers by introducing topological settable systems, an extension of the

causal frameworks of Pearl (2000) and White and Chalak (2009, ìWCî). Applying this framework

to the Nbidder private-value auction permits delivering answers to causal questions there, but

also suggests how topological settable systems can be applied to support causal discourse in more

general games and in other areas of economic inquiry.

In game theory, the lack of formal foundations for causal discourse leads, not surprisingly,

either to informal discussion of cause and e§ect, which may be limited or misleading, or, more

commonly, to the avoidance of such discussion altogether. As an example of informal causal

discourse in game theoretic settings, consider the Wikipedia entry on complete information,2

1See e.g., Heckman (2005), Heckman and Vytlacil (2005), Imbens and Wooldridge (2009), and Heckman (2010).
2http://en.wikipedia.org/wiki/Complete_information
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where we Önd the following:

If a game is not of complete information, then the individual players would not be

able to predict the e§ect that their actions would have on the others players (even if

the actor presumed other players would act rationally).

Is this statement correct? Does it even make sense? With only intuition as a guide, it is hard to

know. Indeed, this statement raises an array of salient questions about causality for incomplete

information games: In what sense is a playerís strategy or action causally a§ected by other

playersí strategies or actions? How is the ceteris paribus ìe§ectî of bidder jís strategy on bidder

iís strategy deÖned? How do rationality in behavior and belief matter for causal discourse? What

is the causal role of Hars·nyiís (1967) agent types (X); if any? Do the number of players (N) and

the distribution of types (F ) have e§ects? If so, how? If not, why not? What are the structural

equations here? SpeciÖcally, are the simultaneous equations of, e.g., Bayesian-Nash equilibrium

structural? How about the equilibrium ìreduced formî? Is it structural? In particular, do

equilibrium strategies and actions have structural meaning and/or causal content?

Giving sensible answers to these questions requires a suitable causal framework. Outside

of economics, the Pearl causal model (PCM; Pearl, 2000, def. 7.1.1, p. 203) has emerged as

a leading paradigm for understanding cause and e§ect. The PCM has been applied usefully to

address certain causal inquiries (see e.g. Pearl, 2000; Halpern and Pearl, 2005(a,b)). In particular,

the PCM has been productively applied to game theory, and, speciÖcally, to games of incomplete

information. Unfortunately, the PCM does not apply to answer the questions above. In seminal

work applying the PCM to games, Koller and Milch (2001, 2003) build on ìprobabilistic graphical

modelsî (e.g. Pearl, 2000) to introduce Multi-Agent Ináuence Diagrams (MAIDs) for representing

and computing equilibrium in non-cooperative games. However, there is no mention of causality

in Koller and Milchís (2001, 2003) careful work. Probabilistic graphical models and related PCM

notions have also been explicitly applied to incomplete information games by Penalva-Zuasti and

Ryall (2003), Jiang and Leyton-Brown (2010), and Wellman, Hong, and Page (2011), among

others. Nevertheless, there are generic limitations of the PCM for causal discourse in games (see

WC): among other things, the PCM cannot support causal discourse in games with non-unique

equilibrium (see also Halpern, 2000); by ruling out a causal role for ìbackgroundî variables, the

PCM does not permit discussion of the causal role played by structurally exogenous variables,

such as agent types, X; and the PCM is not explicit about attributes, i.e. non-varying objects

that play a role in characterizing systems. As WC illustrate, the PCM also does not apply to

complete information pure- and mixed-strategy static games or to inÖnitely repeated dynamic

games. Thus, the PCM does not provide a satisfactory foundation for game-theoretic causal
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discourse.

In order to overcome these limitations, WC introduced settable systems, extending and reÖning

the PCM to accommodate features essential to economic analysis: optimization, possibly non-

unique equilibrium, and learning, while preserving the structural systems spirit of the PCM. Game

theory examples where settable systems apply but not the PCM3 are complete information pure-

and mixed-strategy static games, inÖnitely repeated dynamic games with complete and perfect

information, and Öctitious play with continuum strategies. Other examples are static consumer

demand optimization, dynamic rational expectations consumer demand optimization, stochastic

dynamic optimization of consumption and saving, and adaptive dynamic rational expectations

models of perfectly competitive markets, among others.

Despite these many applications, settable systems still do not apply to certain major classes

of problems, such as incomplete information games. In these games, playersí choices of strategy

(ìtype-contingent plansî) can be rather general functions, such as monotone functions; but WCís

settable systems only admit function variables belonging to topological spaces homeomorphic4

to the space of countable sequences of reals, such as Hilbert space (e.g., Anderson and Bing,

1968). WCís settable systems framework cannot handle player choices that are elements of more

general function spaces. While it may be natural to speak of ìcauseî and ìe§ectî in these

environments, this discourse remains informal, at best, without an adequate rigorous framework.

This paper Ölls this void by introducing topological settable systems, which permit choices to

be elements of general function spaces, providing just the right framework for answering the

causal questions posed above. We illustrate topological settable systems by applying them to the

familiar Nbidder private-value auction. Further, this application suggests how this framework

may be applied not only to more elaborate games and to other areas of economics, but even

to other Öelds. For example, topological settable systems may apply to study causality in the

spatial-temporal manifolds used to analyze neural activity in the brain (Roebroeck, et al., 2011;

ValdÈs-Sosa, Bornot-S·nchez, et al., 2011; ValdÈs-Sosa, Roebroeck, et al., 2011).

The plan of the paper is as follows. Section 2 speciÖes the details of the Nbidder Örst-

price private-value auction that provides our game-theoretic focus throughout. In Section 3, we

introduce basic elements of topological settable systems and relate these to individually rational

behavior in theNbidder Örst-price private-value auction, resolving several of the causal questions

posed above. In Section 4, we introduce further elements of topological settable systems and relate

these to Bayesian-Nash equilibrium, resolving the remaining questions. In particular, we introduce

the notions of comparable and compatible settable systems and employ these to distinguish mutual

3See WC, White, Chalak, and Lu (2011), and Chen and White (1998).
4Recall that two spaces are homeomorphic if there exists a homeomorphism between them, that is, a one-to-one

function continuous in both directions.
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consistency conditions from structural equations. Section 5 contains further discussion. Section

6 summarizes and concludes by providing explicit answers to each of the causal questions posed

above. An Appendix contains supplementary material.

2 An NBidder Private-Value Auction

We consider the Örst-price private-value auction studied by Guerre, Perrigne, and Vuong (2000)

and others in the empirical auction literature and treated by Krishna (2010, chapter 2). There is

a single object for sale, and 1 < N < 1 potential buyers bid for the object. The highest bidder

pays the amount they bid (Örst price) and gets the object. If there is a tie between two or more

bidders, then the winner can be decided randomly, e.g., by drawing lots. It is assumed that there

are no liquidity constraints for any bidder. Thus, each bidder is both willing and able to pay

the amount bid. For simplicity, we assume the seller is non-strategic: she imposes no entry fee,

reserve price, or other requirements.

Bidder i assigns a value of Xi to the object ñ this is the maximum amount the bidder is

willing to pay. The value Xi corresponds to Hars·nyiís (1967) notion of agent type. The Xiís are

random and assumed to be independently and identically distributed on an interval [ v_; v] ( v_; v 2

R+  [0;1)) according to the strictly increasing distribution function F with full support on

[ v_; v], so that EXi < 1. For simplicity and without essential loss of generality, we let [ v_; v]

be the unit interval, I  [0; 1]: F is also assumed to admit a continuous density f  F 0. Each

bidder is assumed to know that her and the other biddersí values are independently distributed

according to F: We also assume that N is commonly known.

Bidder iís strategy is a function i mapping types to actions (bids),
5 determining her bid for

every realized value xi of Xi. Bidders are risk neutral: they maximize the expected value of their

surplus. This surplus is Xii(Xi) if player i wins and 0 otherwise. Because negative surplus can

always be avoided, we require i(Xi)  Xi; so i maps I to I. As shown in the Appendix, non-

decreasing (ìmonotoneî) strategies are never worse than non-monotone strategies, so we restrict

attention to strategies belonging toM, the class of monotone functions from I to I.

First, consider ex ante individually rational behavior, where bidder i determines her best

response strategy taking other biddersí strategies as given and without knowledge of her type.

To state bidder iís optimization problem, let i denote the other biddersí strategy proÖle; this

is the (N  1)vector containing all strategies j ; j 6= i. Next, deÖne

Gi(b;i)  P

b > max

j 6=i
j(Xj)


+ E


1


b = max

j 6=i
j(Xj)


 'i


b; i(Xi)


:

5This is in fact a pure strategy; mixed strategies involve random choice among pure strategies. For now, all
strategies are pure strategies.
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This is the probability that bidder i wins by bidding b, given the other biddersí strategy proÖle

i and the tie-breaking rule 'i; which gives the probability that bidder i wins if there is a tie.

Then bidder iís ex ante problem is

max
i2M

 i(i;i)  E

Gi(i(Xi);i) (Xi  i(Xi))


: (1)

To ensure existence of a best response, we restrict the proÖles to have strictly monotone

elements, so that i 2 j 6=i Ms; whereMs is the set of strictly increasing functions from I to

I.6 To verify existence, we Örst note that when proÖles i belong to j 6=iMs; ties occur with

probability zero, and solving the problem (1) is equivalent to solving

max
i2M

E

P

i(Xi)  max

j 6=i
j(Xj) j Xi


 (Xi  i(Xi))


: (2)

By lemma 7 of van Zandt and Vives (2007) or from Milgrom and Shannonís (1994) Monotonicity

Theorem, this problem has a solution for every i 2 j 6=i M; and in particular for every

i 2 j 6=i Ms:
7 When the solution is not unique, there is a measurable selection, as we verify

in the Appendix. We let ri denote this selection. We call ri the ex ante response function, and

we call i = ri(i) the best response.

Note the distinction between the strategies j 2 Ms; j 6= i; which need not be optimal, and

the optimal8 i 2 M. That is, i is iís individually rational strategy, whereas i is a vector of

othersí possibly suboptimal strategies, which bidder i knows (i.e., correctly believes).

To express the bid determined by the best response, we observe that ri satisÖes the following:

for xi 2 I almost surely (a:s:),

bi(i; xi)  e(ri(i); xi) 2 argmax
bi2I

P

bi  max

j 6=i
j(Xj)


 (xi  bi) ;

where e is the evaluation functional, e(; x) = (x): This represents bidder iís optimal bid,

bi = bi(i; xi); once she knows that her type is actually xi and given other biddersí strategies

i. As bidder i never observes the other playersí realized types, her payo§ is not directly a

function of these ñ hence the designation "private value."

Although ex ante the other bidderís strategies may or may not represent their best responses,

in Bayesian-Nash equilibrium, each bidderís chosen strategy must be the best response to the

other biddersí equilibrium strategies. This equilibrium condition is the Öxed point requirement,

yi = ri(
y
i); i = 1; :::; N; (3)

6 If one replaces Ms with M, ties can occur with non-zero probability, and best responses need not exist. We
thank Philip Reny for his guidance.

7The solutions to (2) for i 62 j 6=i Ms are not best responses and are not of interest here, apart from their
serving to allow easy application of available existence results.

8 In the PCM, the same symbol would be used to denote both of these very di§erent objects. (See, e.g., Pearl
(2000, p.203).) Our use of the superscript "" is intended to avoid this confusion.
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where yi 2Ms denotes bidder iís equilibrium strategy. In Bayesian-Nash equilibrium, each bidder

correctly believes that the other players will best respond. Thus, Bayesian-Nash equilibrium is a

rational belief equilibrium. Equilibrium strategies yield equilibrium bids byi = yi (xi):

For thisN -bidder independent private value auction, the existence of a unique strictly monotone

symmetric Bayesian-Nash equilibrium is well known. Among others, Riley and Samuelson (1981)

show that the equilibrium responses satisfy

yi (xi) = xi 
1

(F (xi))N1

Z xi

0
(F (u))N1du:

This auction game is now su¢ciently speciÖed that all the questions in the Introduction apply.

3 Topological Settable Systems and Individual Rationality

To address the causal questions of interest, we extend WCís settable systems to topological set-

table systems. This supports causal discourse for phenomena involving random variables taking

values in general topological spaces, rather than just the real line. This makes it possible to talk

sensibly about the causal e§ects of one agentís strategy on other agentsí best responses. Some

of the material below is unavoidably abstract, but we promptly follow each general concept with

discussion relating these to the auction of Section 2. We draw on and refer the interested reader

to Corbae, Stinchcombe, and Zeman (2009, ch.10) for topological background.

Recall that a topological space is a pair (X; ); where X is a non-empty set and  is a collection

of subsets of X containing X and ?; closed under arbitrary unions and Önite intersections. The

elements of  are open sets. Topological spaces may or may not have associated norms or metrics.

For example, consider the strategy set M; the set of nonñdecreasing functions from I to I.

This set has a topology (described next), say M: The topological space (M; M) is known as

Helly space, named after mathematician Eduard Helly (see, e.g., Kelley, 1975, p.164). M is a

closed subset of II; the set of all mappings from I to I. That set has an associated topology, say

 I. We can take M to be the relative topology, deÖned as the collection of all sets of the form

M\A; where A belongs to  I. Ms is a subset ofM that is neither open nor closed, as the limit

of a sequence of strictly increasing functions can be strictly increasing, but need not be. AsM is

the closure ofMs;Ms is dense inM: Helly spaceM is not a metric space.9

To deÖne random elements of topological spaces, we let B(X; ) denote the Borel Öeld

generated by the topology; this is the smallest collection of subsets of X that includes all elements

of  , the complement of any set in B(X; ); and the countable union of any collection of sets in
9 It is also known that Helly space is compact convex Hausdor§, Örst (but not second) countable, and separable

(Kelley, 1975, p.164).
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B(X; ): Let (;F) be a measurable space. Random elements of (X; ) are mappings, say Z : !

X; that are measurableF=B(X; ), i.e., for all B 2 B(X; ); Z1(B)  f! : Z(!) 2 Bg 2 F :

Random scalars and vectors are simple examples of this concept. For example, for types,

Xi :  ! I; take X = I and let  I be the usual open sets of I. Another example is that of a

random strategy. This is a mapping B from  toM, say, such that  = B(!) belongs toM for

each ! in  with the property that for all ìstrategy eventsî M 2 B(M; M);
10 B1(M)  f! :

B(!) 2Mg belongs to F . If P is a probability measure on (;F); M is a strategy event, and B

is a random strategy, then we can deÖne the probability of M under B as

PB[M ]  P [B 2M ] = Pf! : B(!) 2Mg:

For example, a measurable selection from a strategy event M; say sM :  !M; gives a random

strategy B such that B(!) = sM (!) 2 M for all ! 2 : Thus, even when there are multiple

individually rational or equilibrium solutions, whenever a measurable selection exists, we can

apply it to the solution set to obtain a single solution, a randomized strategy. This is especially

relevant for games with correlated equilibria. As Nash equilibrium su¢ces for our auction, we

will not immediately require these, but they suggest the scope of topological settable systems.

We also use the concept of the product topology. Let N+ denote the positive integers, and

deÖne N+  N+ [ f1g: When n = 1; we interpret i = 1; :::; n as i = 1; 2; ::: . Let n 2 N+;

and for i = 1; :::; n; let (Xi;  i) be topological spaces: DeÖne the Cartesian product Xn  ni=1Xi;

the projection mapping i : Xn ! Xi is the mapping such that i(xn) = xi for each xn =

(x1; :::; xn) 2 Xn: The product topology, say n = ni=1 i; is the smallest topology that makes each

i; i = 1; :::; n; continuous, i.e., 1i ( i)  n:When n is countable inÖnity, B(X1; 1) denotes the

Borel Öeld generated by the measurable Önite-dimensional product cylinders, i.e. the smallest

collection of subsets of X1 that includes: (i) sets of the form 1i=1Bi; where Bi 2 B(Xi;  i);

i = 1; 2; :::; and Bi = Xi except for Önitely many i; (ii) the complement of any set in B(X1; 1);

and (iii) the countable union of any collection of sets in B(X1; 1):

For example, consider the ex ante response function, ri : j 6=iMs !M: We will require the

domain (here,MN1
s  j 6=iMs) to be a Borel subset of the product space (MN1; N1M ); say.

This holds, asMs is a measurable subset ofM.11 For the evaluation functional, e :M I! I;

we require the domainM I to be a Borel set of the product space (M I; M   I); which it

obviously is. Below, we will require ri and e to be measurable functions. We noted above that ri

is a measurable selection. The joint measurability of e is ensured by results of Aumann (1960),

asM is a bounded Banach class, as veriÖed in the Appendix.
10We use the term "event" to denote a Borel measurable set. A "strategy set" could be any subset ofM.
11The complement of Ms in M can be represented as a countable union of closed (thus measurable) subsets of

M, namely the collection of functions inM with áat area of width at least rn 2 Q\ I, where Q is the set of rational
numbers. Thus,MMs is measurable, and so isMs:
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3.1 Topological Settable Systems: Formal DeÖnition

We now have su¢cient background to introduce topological settable systems. We begin by provid-

ing a formal deÖnition. We then discuss the component of this deÖnition and illustrate topological

settable systems using our auction example. We let N  f0; 1; :::g, and deÖne N  N[f1g:When

m = 0; we ignore references to j = 1; :::;m.

DeÖnition 3.1 (Partitioned Topological Settable System) A triple S  f(A;a); (;F ; a);

(;X)g is a partitioned topological settable system with components (A;a); (;F ; a);

and (;X); deÖned as follows.

Let A be a non-empty set and let attributes a 2 A be given. Let (;F ; a) be a complete

signed measure space such that  contains at least two elements and a is Önite and countably

additive. For n 2 N+; let units have indexes i = 1; 2; :::; n, and let  = fbg be a partition of

f1; :::; ng; with cardinality B 2 N+:

To deÖne X  (X0;X1 ; :::;X

n ); let m 2 N; let (X0;j ; 0;j) be topological spaces, j = 1; :::;m;

let S0 be a multi-element Borel subset of the product topological space (Xm0 ; 
m
0 ); and let the

fundamental settings Z0 : ! S0 be measurable (F=B(Xm0 ; 
m
0 )).

For units i = 1; 2; :::; n, let (Xi;  i) be a topological space, let Si be a multi-element subset of

B(Xi;  i); and let settings Zi : ! Si be measurable functions into Si. For blocks b = 1; :::; B;

let Z(b) be the vector containing Z0 and Zi ; i =2 b; and taking values in the non-empty Borel

set S(b)  S0 i=2b Si: For b = 1; :::; B; let S

[b]  i2bSi be a non-empty Borel set, and suppose

there exists a measurable joint response function r[b](  ;a) : S

(b) ! S[b] such that responses

Y [b]()  (Y

i (); i 2 b); are jointly determined as

Y [b] = r[b](Z

(b);a):

For i = 1; :::; n; deÖne the settable variables Xi : f0; 1g  ! Si as

Xi (0; !)  Y i (!) and Xi (1; !)  Zi (!) ! 2 ;

and let X0(0; !)  Y0(!)  X0(1; !)  Z0(!); ! 2 : Put X  fX0;X1 ;X

2 ; :::g:

The deÖnition of topological settable systems includes settable systems, originally deÖned

by WC, as the special case where all the topological spaces are (R; R); where R is the usual

collection of open sets of R: We call WCís settable systems real settable systems to distinguish

them from topological settable systems. Because real settable systems also admit a countable

number of units, they can accommodate settable variables taking values in topological spaces

homeomorphic to (R1; 1); the topological space of countable sequences of reals, a metrizable
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space. The auction game of Section 2 involves (M; M). This space is not metrizable, so there

can be no homeomorphism between (M; M) and (R1; 1):12 That is, there is no way to work

with real settable systems and replicate the topological properties of (M; M). WCís real settable

systems therefore do not apply. But as we now show, our auction maps directly to topological

settable systems.

A topological settable system is a triple S  f(A;a); (;F ; a); (;X)g. The Örst component

of S speciÖes attributes a 2 A. Attributes implicitly contain all Öxed features of the system of

interest, apart from  discussed in what follows. For games, attributes can exhaustively specify

the rules, including the number of players, their possible actions, their type spaces, and their

utility/payo§ functions,13 together with other Öxed aspects of the game, such as the form of

equilibrium and any equilibrium selection mechanisms, among other things. In our auction, the

given number of players, N; and the common distribution of types, F; are salient elements of a:

The second component of S is the measure space (;F ; a). It is often convenient to take

the signed measure a to be a probability measure, in which case we write a as Pa: In our

auction game, the probability measure Pa (= P) is determined by F and N and by the assumed

independence of types. When dependence of types is of interest, this dependence can be expressed

as a component of a; expressed, for example, as a speciÖc choice of copula (Sklar, 1959; Nelsen,

1999).

The third component of S is (;X). There are n units in S, indexed by i = 1; 2; :::; n, which

 partitions into blocks. For each unit i, there is a settable variable Xi . Roughly speaking, each

settable variable Xi is formed of a setting Xi (1; !)  Zi (!) and a response X

i (0; !)  Y i (!),

with ! 2 , and Y i may depend on settings of other system variables speciÖed by the partition

. Further, S may admit fundamental settable variables X0 whose responses do not depend on

settings of other system variables. Nevertheless, the fundamental settings Z0 of X0 can ináuence

the responses of other system variables. Next, we discuss settings and responses of settable

variables in more detail and illustrate these using our auction example.

In the auction example, the vector of types, X  (X1; :::; XN ); corresponds to the funda-

mental settings, Z0; as these are determined outside the system. For the agent types, the

spaces (X0;j ; 0;j) = (I;  I) are implicitly components of a; the product topological space for

the types is (Xm0 ; 
m
0 ) = (IN ; NI ): Thus, in this example m = N . The admissible values

for the fundamental settings coincide with S0 = IN . The responses Y0 of X0 are deÖned by
12 If there were a homeomorphism, it could be used together with the metric on (R1; 1) to deÖne a metric for

(M; M): But this is impossible.
13 It is standard to represent the structure of Baysian games as b  (N; (Ai)i2N; (Ti)i2N; F; (ui)i2N) (e.g., Myerson,

1997), where N is the set of players (here, N = f1; :::; Ng); Ai is player iís set of possible actions (here, Ai = I); Ti
is player iís type space (here Ti = I); and ui is player iís payo§/utility function. Thus, the components of b are
components of a:
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X0(0; !)  Y0(!)  X0(1; !)  Z0(!), with X0 not depending on settings of other variables.

In our auction with N bidders, we designate two units for each player, a ìstrategyî unit and

a ìbidî unit.14 Thus, here n = 2N: For each unit i, there is a setting Zi :  ! Si with Si
a subset of B(Xi;  i). In the auction, for strategy units (i = 1; :::; N), the topological space is

(Xi;  i) = (M; M):
15 For bid units (i = N + 1; :::; 2N), the topological space is (Xi;  i) = (I;  I):

These spaces are also implicitly components of a. Here, Si =M includes the admissible strategies,

and Si = I represents the admissible bids, implicitly components of a and clearly elements of

B(M; M) and B(I;  I); respectively.

The partition  acts to specify blocks of units that jointly respond to settings of system units

outside their block. The elementary partition is e = ff1g; :::; fngg. The elementary settable

system Se has this partition and represents the response of each individual unit to every other

unit of the system. To examine the individually rational case in the auction, we can use the agent

partition, a = fab ; b = 1; :::; Ng; where block b = i has ab = fi; i+Ng: The ith element of this

partition groups together all responses governed by agent i. The corresponding settable system

describes how each agentís individually rational optimal strategy and optimal bid jointly depend

on settings for all other agents. Other partitions, discussed below, correspond to jointly rational

equilibrium.

The joint response function r[b](  ;a) speciÖes how the settings outside block b; Z

(b); deter-

mine the joint responses inside block b; Y [b] : The distinction between the structurally determined

responses (left-hand-side variables, Y [b]) and the settings (right-hand-side variables, Z

(b)), which

can take any admissible value, enforces the Strotz-Wold (1960) dichotomy between left-hand side

and right-hand side variables in structural equations: the same variables never appear on both

the right- and left-hand sides of the systemís structural equations. This rules out simultaneity.

Settings, response functions, and responses are partition speciÖc. For the agent partition in

the auction, a, block b references bidder i; and ra[i] = r
a

[i] = (r
a
i ; r

a
i+N ); say, where strategy units

have responses

rai (z
a
(i);a) = ri(i); i 2 f1; :::; Ng;

and bid units have responses

rai+N (z
a
(i);a) = bi(i; xi); i 2 f1; :::; Ng:

By deÖnition, za(i) = z
a

(i) contains setting values outside block i; that is, setting values for other

agentsí arbitrary strategies and bids, and setting values for types, say,16 za(i) = (i; bi; x):

14We explicitly consider both strategies and bids to provide a complete causal account, permitting us to address
and resolve all the causal questions raised in the introduction.
15Below, we suitably restrict the domains and co-domains.
16For clarity and notational simplicity, we write za(i) = (i; bi; x); omitting the agent partition superscript ìaî
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Observe that ra[i](  ;a) makes explicit the dependence of the response on a, whereas the

dependence of ri and bi on N and F is implicit. Also, observe that whereas ra[i](z
a
(i);a) allows the

response to potentially depend on settings for every unit except those in ai ; the economics of the

auction game dictate that the optimal choice for strategy unit i depends only on the settings of

strategies for the other strategy units, i; and not on any of the agent values (types) or other

agentsí bid settings. Similarly, the optimal choice for bid unit i+N depends only on i and the

own type, xi. The economics of the game thus impose variable exclusion structure.

For block b; the joint response function is given by r[b](  ;a) : S

(b) ! S[b] and the sets S


(b) and

S[b] can impose partition-speciÖc restrictions on the admissible values for Z

(b) and Y


[b] ; respectively.

Under the agent partition in the auction, we have za(i) = (i; bi; x) 2 S
a

(i) =M
N1
s  IN1 IN ,

enforcing strict monotonicity for the proÖle faced by a bidder. Because Ms is a measurable

subset ofM; Sa(i) is measurable as required. The joint responses take values in the unrestricted

Sa[i] =M I.

Thus, each aspect of individually rational behavior in the Nbidder Örst-price private-value

auction maps to the agent partition of the settable systems framework, permitting us to deÖne

agent partition-speciÖc settable variables X a  fX0;X a1 ; :::;X
a
2Ng for this game.

17 Because of the

structure imposed by the settable system, we refer to any of its elements or aspects as structural.

In particular, the response equations Y [b] = r[b](Z

(b);a) are structural equations. In our auction

game, the agent partition structural equations are

a;i = ri(i)

ba;i = bi(i; xi); i = 1; :::; N: (4)

We write a;i and ba;i to make it clear that these are agent partition response values; these were

written i and b

i in Section 2.

The fundamental settings, Z0; are determined outside the system; they are thus structurally

exogenous.18 Here, the types X are structurally exogenous. The responses Y [b] are determined

within the system; they are therefore structurally endogenous. The individually rational strategies

and bids a;i and ba;i are structurally endogenous.

from the formally correct (ai; b
a
i; x).

17 It would be formally correct and more explicit to write X a
a  fXa;0;X a

a;1; :::;X a
a;2Ng instead of X a, making clear

the dependence of the settable variables on the attributes. We leave this implicit to keep the notation simpler.
18This notion of structural exogeneity has no necessary relation to econometric notions of exogeneity, which involve

various forms of stochastic orthogonality (e.g., independence or non-correlation) between observed regressors and
unobserved "errors".
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3.2 Cause and E§ect in Topological Settable Systems

In topological settable systems, deÖnitions of cause and e§ect are relative to a system and partition

speciÖc.

DeÖnition 3.2 (Intervention, Direct Cause, Direct E§ect) Let S  f(A;a); (;F ; a); (;

X)g be a partitioned topological settable system. For b 2 f1; :::; Bg and j =2 b; let z(b) and ~z(b);j
be distinct and admissible, i.e., z(b); ~z(b);j 2 S(b); with z(b) and ~z(b);j identical, except that z(b) has

a component zj ; whereas ~z(b);j has ~zj 6= zj instead. Then we say the ordered pair (z(b); ~z(b);j);

denoted z(b) ! ~z(b);j ; is an intervention to Z(b):

Let i 2 b; j 62 b: Then Xj directly causes Xi in S if there exists z(b) ! ~z(b);j such that

ri (~z(b);j ;a) 6= ri (z(b);a);

where r[b](~z(b);j ;a) and r

[b](z(b);a) are both admissible, i.e., r


[b](~z(b);j ;a), r


[b](z(b);a) 2 S


[b]: Other-

wise, we say Xj does not directly cause Xi in S:

The ordered pair (yi; ~yi;j) = (ri (z(b);a); r

i (~z(b);j ;a)) is the direct e§ect of X


j on Xi in S

of z(b) ! ~z(b);j .

According to this deÖnition, causality is structural functional dependence, given a suitable context.

This now enables us to answer several of the questions posed in the Introduction. SpeciÖcally,

agent types can play a causal role in our auction game, as fundamental variables can indeed act

as direct causes under this deÖnition. As we see from structural equations (4), however, in the

agent partition, other agent types do not directly cause either strategy or bid responses for a

given agent, as the agent-partition joint response functions ra[i] do not depend on xi: Nor does

an agentís own type directly cause her strategy response, as rai does not depend on xi: But an

agentís own type does directly cause her bid response.19

Also, the individually rational strategy responses, obtained under the agent partition, formalize

the intuitive directionality of best responses. In particular, we see that in the agent partition,

other biddersí (suboptimal) strategies but not their actions (bids) directly cause agent iís rational

behavior, as both the strategy and bid responses depend on i but not bi: Indeed, each bidder

has enough information to determine precisely how her own strategy and action will causally a§ect

every other biddersí rational responses here, despite the incomplete information and contrary to

the Wikipedia entry quoted above. Only when the other playersí response functions are unknown

is a given bidder unable to determine the e§ects of her behavior. Rationality in behavior is a

19Strictly speaking, the presence of xi in agent iís bid response function implies only that the associated settable
variable is a potential direct cause. In our auction game, however, this potential direct cause is generally an actual
direct cause, as the bid response function generally is not constant in xi.
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su¢cient but not necessary condition for other biddersí response functions to be known to every

bidder.

This deÖnition of partition-speciÖc direct cause and e§ect admits the possibility of mutual

causality, or what Strotz and Wold (1960) call mutual causation: we can have both Xi directly

causing Xj and Xj directly causing Xi : Because of the distinction between settings and re-

sponses, however, there is no simultaneity or instantaneous causality. Framing causal statements

in terms of settable variables enforces this distinction, making it explicit that causal relations do

not simply hold between random variables or events (elements of F); rather, they hold between

more structured objects, i.e., settable variables. In the agent partition for our auction game, we

immediately see that mutual causality is present, as each agentís strategy directly causes every

other agentís response. There is, however, no simultaneity.

By construction, the e§ects just deÖned are ceteris paribus: z(b) and ~z(b);j di§er in only

one component. This is only for simplicity and concreteness. Any pair (z(b); ~z(b)) of distinct

admissible values is an admissible intervention, and the joint direct e§ect of this intervention is

(y[b]; ~y[b]) = (r

[b](z(b);a); r


[b](~z(b);a)): Although the term ìinterventionî suggests some mechanical

process, there is no need for physical manipulation. As the deÖnition makes clear, in settable

systems, interventions are simply pairs of admissible values for the settings.

WC and Chalak and White (2012) deÖne the e§ect of the intervention z(b) ! ~z(b) as the

di§erence ~y[b]  y[b]: General topological spaces need not be vector spaces, so di§erences need not

be deÖned for (Xi;  i), motivating our deÖnition of e§ects as pairs of response values. Nevertheless,

when Xi is a subset of a vector space, di§erences taking values in that vector space are deÖned and

can be interpreted as e§ects, analogous to WC. For example, consider the strategy intervention

i ! ~i;j ; where ~i;j di§ers from i with respect to the strategy of bidder j: One e§ect of this

intervention is (ri(i); ri(~i;j)): The di§erence ri(~i;j)ri(i) is generally not an element of

M, as it takes values in [1; 1] and need not be monotonic. Nevertheless,M is a subset of the set of

bounded Borel-measurable functions from I to R; a vector space. The di§erence i;j  ri(~i;j)

ri(i) is thus an element of this set. The usual Lp norms can be deÖned for these di§erences, so

the magnitude of the e§ect can be deÖned as the norm jji;j jjp = [
R 1
0 ji;j(x)j

p dQ(x)]1=p; where

Q is a speciÖed probability measure on the measurable space (I;B(I;  I)):

Observe that only variables can have e§ects. Constants, like N and F in the auction example,

cannot take more than one value, so interventions are not possible (cf. Holland, 1986). Thus, here

N and F do not have e§ects, resolving several more questions posed in the Introduction. The

same is true for all system attributes, a. Nevertheless, we emphasize that causal relations in TSS

are relative to a system. If interest attaches to e§ects of F; say, then F must be removed from

the system attributes and assigned status as a variable taking values in a suitable topological
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space. For example, F can be a fundamental variable belonging to a collection of distributions

deÖning measures absolutely continuous with respect to a given Önite non-negative measure

a: These distributions can be indexed by a Önite- or inÖnite-dimensional parameter. Causality

is therefore not only partition speciÖc, but relative to the attributes chosen to describe a given

phenomenon. Our treatment of causal relations as being relative to a settable system accords

with the statement in Heckman (2005) that ìcausality is a property of a model of hypotheticals.î

4 Cause and E§ect in Equilibrium

4.1 Comparable and Compatible Settable Systems

To relate individual best responses to jointly rational responses (Bayesian-Nash equilibrium), we

use the concepts of comparable and compatible settable systems.

4.1.1 Comparability

DeÖnition 4.1 (Comparability, Nesting, Finer and Coarser Partitions) Suppose topo-

logical settable systems Sf and Sc have identical (A;a): Then they are comparable.

Let comparable topological settable systems Sf and Sc have partitions f = ff1 ; :::;
f
Bf
g and

c = fc1; :::;
c
Bcg; respectively. If each element of 

c is a union of elements of f ; then c

nests f , c is coarser than f ; f is Öner than c; and we write f - c:

When f - c and c - f ; then f and c are the same, f = c:20 When we discuss

just two partitions f and c such that f 6= c and f is Öner than c; we write f  c;

and we call f the Öne partition and c the coarse partition. The coarsest partition is the global

partition, g  ff1; :::; ngg: This nests every partition; in particular, it nests the Önest partition,

which is the elementary partition, e  ff1g; :::; fngg: We use the same nesting terminology for

comparable Sf and Sc. For example, if c nests f ; then we also say Sc nests Sf or that Sf is

Öner than Sc; and we write Sf - Sc:
In our incomplete information game, the elementary partition e and the agent partition a

are associated with comparable topological settable systems Se and Sa; say, with the coarser

system Sa nesting the Öner system Se: This follows because a = fai g; with 
a
b = fb; b+Ng =

fbg [ fb+Ng; each element of the agent partition is the union of elementary partition elements.
20Let  denote the collection of all partitions of f1; :::; ng: Then it is easily checked that (;-) is a partially

ordered set. As every partition has a greatest lower bound (inf), (;-) is a complete lattice (e.g., Burris and
Sankappanavar, 1981, theorem 4.2, p.17).
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4.1.2 Compatibility

To motivate the deÖnition of compatibility, Örst recall that for cb 2 
c; we have

Y c[b] = rc[b](Z
c
(b);a): (5)

Next, deÖne rf[b]  (rfi ; i 2 
c
b): This is the vector of response functions for the Öne partition

corresponding to the coarse partition element cb. Let S
c
(b) denote the set of coarse partition

admissible values for the settings Zc(b); and suppose that for each z
c
(b) 2 S

c
(b) there is an admissible

yc[b] (2 S
c
[b]) such that

21

yc[b] = rf[b](y
c
[b]; z

c
(b);a). (6)

When (6) holds, we see that yc[b] is a Öxed point of what we call the Öne partition 
c
bsystem (6).

SigniÖcantly, and unlike the PCM, this Öxed point need not be unique. As noted above, a can

embody equilibrium selection mechanisms, so it can specify which of possibly many Öxed points

for (6) is represented by (5).

We refer to (6) as a mutual consistency condition, as it ensures that the coarse partition is

consistent with the Öne partition in this speciÖc way. Reinforcing the message of Strotz and

Wold (1960), we emphasize that although these equations are precisely a system of simultaneous

equations, they are not structural equations carrying causal meaning.22 That meaning is carried

by the structural equations of Sf and Sc: Causal discourse is valid in both Sf and Sc regardless

of whether (6) holds.23 Instead, the role of the simultaneous equations system (6) is to provide

functional links between Öner and coarser systems. These connections make causal discourse and

economic explanations coherent between partitions in a precise sense.

To relate these ideas to our auction game, let the Öne partition be the agent partition, a; and

let the coarse partition be the global partition, g: Clearly, g nests a: The settable system Sg

corresponding to g describes how all biddersí strategies and bids jointly respond to all biddersí

types. The Öxed point condition (6) has the form

g;i = rai (
g;
i ; b

g;
i ; x;a) = ri(

g;
i )

bg;i = rai+N (
g;
i ; b

g;
i ; x;a) = bi(

g;
i ; xi); i = 1; :::; N;

where we modify the arguments of rai and r
a
i+N to make the dependencies clear.24 These simul-

21We write rf[b] in this form for notational convenience. Although rf[b] as a whole depends on all elements of y
c
[b];

for given i 2 cb; r
f
i depends only on the subvector of y

c
[b] that omits the variables determined within the Öne partion

block containing i: Note also that yc[b] must take values admissible to the components of r
f
[b]:

22 In a related context, Strotz and Wold (1960, p.423) state, "what are simultaneous equilibrium conditions ought
not to be confused with causal relations."
23 In sharp contrast, causal discourse in the PCM is deÖned only when the analog of (6) has a unique solution.
24To ensure that the global partition strategies are admissible to the agent partition response functions, we take

S
g

[1] =M
N
s  IN : That is, only strictly monotone global partition strategies are allowed.
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taneous equations correspond to the Bayesian-Nash equilibrium conditions (3). Drawing on the

discussion above, we can now resolve another of the questions posed at the outset: the Bayesian-

Nash equilibrium conditions (3) are mutual consistency conditions, not structural equations.

Given an admissible Öxed point, y; and assuming that a speciÖes that responses for the global

partition are governed by Bayesian-Nash equilibrium, it follows that g; = y: Then25

g;i = rgi (x;a) = yi

bg;i = rgi+N (x;a) = yi (xi); i = 1; :::; N: (7)

The responses of the agent partition and those of the global partition are then mutually consistent.

We formalize these ideas with the following deÖnition.

DeÖnition 4.2 (Mutual Consistency/Compatibility) Let Sf and Sc be comparable topo-

logical settable systems with Sf - Sc. If (6) holds for all cb; b = 1; :::; Bc; then Sf and Sc are
mutually consistent or compatible settable systems, and we write Sf - c Sc:

An important consequence of the cross-partition coherence a§orded by compatibility is that

it makes possible valid statements about cause and e§ect in unobservable Öne partition (e.g.,

individual best response) structures using knowledge gained solely from observable coarse partition

(e.g. Bayesian-Nash equilibrium) structures. SpeciÖcally, by linking response functions across

partitions, compatibility ensures functional dependence between Öne and coarse partition e§ects,

generalizing the e§ect linkages studied in the classical identiÖcation problem for linear structural

systems (e.g., Fisher, 1966). The Appendix contains an example providing further insight.

To examine the causal content of the equilibrium response function, we inspect eq. (7) and ap-

ply DeÖnition 2.2. This shows that only the bidderís own type (directly) causes the bidderís action

(bid) in the global partition. But what about the bidderís equilibrium strategy g;i ? What causes

it? The answer illustrates a subtle insight elucidated by the settable systems framework: nothing

causes g;i : Nevertheless, the equilibrium strategy g;i is formally explained by the principles of

Bayesian-Nash equilibrium, in which a bidderís rational (optimizing) behavior and rational beliefs

about othersí behavior, operating on the speciÖcs of the game (the primitives of the system, as

embodied in the attributes a), determine the bidderís equilibrium strategy. In the deductive-

nomological theory of explanation (e.g., Hempel and Oppenheim, 1948; Popper, 1959), to explain

a phenomenon is to show that it is the logical consequence of the application of a speciÖc set of

governing principles to the primitives of a given system. In this sense, the explanatory answer

to the question, ìWhy is g;i = yi ?î is that this is the logical consequence of the principles of

25For the equilibrium bid representation, bg;i = bi(
g;
i ; xi) = e(ri(

g;
i ); xi) = e(

g;
i ; xi) = e(

y
i ; xi) = 

y
i (xi):
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rational action and belief underlying Bayesian-Nash equilibrium applied to the system primitives,

including N and F . Interestingly, this is an example of a non-causal explanation.26

Equation (7), obtained under the global partition, formalizes the intuitive joint determina-

tion of equilibrium strategy responses. Correspondingly, the equation for g;i is an example of a

structural equation in which causality is absent. This shows that, within the settable systems par-

adigm, structural relations are more basic than causal relations, as causal relations are necessarily

structural, but structural relations need not be causal. With this understanding, we can resolve

our questions at the outset about the structural and causal content of the ìreduced formî: The

reduced form is structural. In particular, both g;i = yi and b
g;
i = byi have structural meaning

as responses in a structural system; however, only bg;i is causally determined.

4.2 Recursive and Canonical Topological Settable Systems

Causal discourse is especially straightforward in recursive systems. To describe these systems

formally, for b > 0; we let [1:b]  [ba=1a and [0:b]  0 [[1:b]; where 0  f(0; 1); :::; (0;m)g:

By convention, [0:0] = 0 and Z[0:0] = Z0:

DeÖnition 4.3 (Recursivity) Let S be a partitioned topological settable system. For b =

0; 1; :::; B, let Z[0:b] denote the vector containing the settings Z

i for i 2 [0:b] and taking values

in S[0:b]  S0 i2[1:b] Si; S[0:b] 6= ?. For b = 1; :::; B; suppose that r  fr[b]g is such that the

responses Y [b] are jointly determined as

Y [b] = r[b](Z

[0:b1];a):

Then we say that  is a recursive partition, r is recursive, and that S is a recursive

topological settable system or simply that S is recursive.

Recursive systems are also called triangular or acyclical. The global partition is always re-

cursive, as B = 1 and global partition responses are jointly determined as Y g = r
g

[1] (Z[0:0];a): In

the global partition, we see that only the fundamental settable variables X0 are potential direct

causes of the settable variables X g: This matches what we saw in Bayesian-Nash equilibrium for

our auction game, where only types could potentially cause equilibrium strategies and bids.

A somewhat richer example involves the strategy-action partition, s = fs1;
s
2g; where

s1 = f1; :::; Ng and 
s
2 = fN + 1; :::; 2Ng: The joint responses for s1 are the jointly determined

strategies s;i ; i = 1; :::; N; and those for s2 are the jointly determined bids b
s;
i ; i = 1; :::; N:

26There is an on-going debate in the philosophy of science about whether all explanations must be causal. To-
gether, the deductive-nomological theory of explanation and the settable systems causal framework provide a par-
ticular context in which this issue can be resolved: non-causal explanations are possible. Further, the nomological-
deductive theory provides a foundation for causal explanation.
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Observe that the agent partition a is not nested in s; as there is no way to form s1 as a union

of elements of a: But the elementary partition e = fe1; :::;
e
2Ng; 

e
i = fig; is nested in 

s; as

is easily checked; thus Se - Ss: We determine the responses for the strategy-action partition by
requiring that these be mutually consistent with the elementary partition responses.

From eq.(2) and related discussion, the elementary partition strategy and bid responses are

e;i = rei (i; b; x; a) = ri(i)

be;i = rei+N (; bi; x; a) = e(i; xi); i = 1; :::; N;

where we have adapted the notation to make the elementary partition settings clear. As we have

seen throughout, rationality in behavior and the underlying information constraints imply speciÖc

restrictions on the response functions in the form of exclusion restrictions.

Imposing compatibility between the strategy-action and elementary partitions gives

s;i = rei (
s;
i ; b

s; x; a) = ri(
s;
i )

bs;i = rei+N (
s; bs;i ; x; a) = e(

s
i ; xi); i = 1; :::; N;

where we write bs and s to denote arbitrary admissible strategy-action settings for bids and

strategies, distinguishing these from the strategy-action responses bs; and s; for bids and

strategies. When a speciÖes that responses for the strategy-action partition are governed by

Bayesian-Nash equilibrium, the system above gives s; = y: The Öxed point for the bid re-

sponses is trivial. Thus, the strategy-action settable system Ss compatible with the elementary

system Se is given by

s; = y

bs;i = e(si ; xi); i = 1; :::; N:

Observe that although the strategy responses for the strategy-action partition are the same

as those for the global partition, the bid response functions di§er between the two. Only the

own types can directly cause global partition bids. In contrast, both the own types and the own

strategies can cause the strategy-action partition bids.

Also observe that the strategy-action partition is recursive, as responses in each block depend

at most only on settings in ìpredecessorî blocks. That is, responses in block 1 depend at most

on settings in block 0; and responses in block 2 depend at most on settings in blocks 0 and 1:

In recursive settable systems, mutual causality is absent. We can then represent the unimpeded

evolution of the system by equating the settings for a given block with the responses for that block.

We formalize this with the notion of canonical topological settable systems.
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DeÖnition 4.4 (Canonical Topological Settable System) Let S be a recursive topological

settable system such that Z[b] = Y [b] ; b = 1; :::; B: Then S is a canonical topological settable

system.

The canonical version of the strategy-action partition is then

s; = y

bs;i = e(s;i ; xi); i = 1; :::; N:

Observe that the canonical strategy-action partition yields the same strategies and bids as the

global partition, but there is still a subtle distinction: strategies can directly cause bids in the

strategy-action partition, but not in the global partition.

Because mutual causality is absent and because settings and responses coincide in canonical

settable systems, it is natural to simplify causal discourse by dropping explicit references to

settable variables X and, for a < b; instead simply speaking about the direct e§ects of, say, Y [a]
on Y [b] or of y


[a] on y


[b]. For example, in the canonical strategy-action partition, we can say that

s;i and xi are direct causes of b
s;
i ; whereas in the global partition only xi is a direct cause of

bg;i :

Standard canonical settable systems support natural deÖnitions of indirect and total e§ects

of Y [a] on Y [b] , as Chalak and White (2012) show. The patterns of total and indirect e§ects

can then imply speciÖc probabilistic conditional independence relations, supporting recovery of

structural/causal information from observed data. The notions of indirect and total e§ects extend

to canonical topological settable systems, but we leave this analysis aside here for brevity.

5 Discussion

As we have seen, neither the PCM nor the real settable systems framework of WC is able to support

causal discourse in the Nbidder private-information auction game. In contrast, topological

settable systems readily apply. Given the non-metrizable nature of the topological spaces required

for this application, topological settable systems are not more general than necessary.

There is, however, one feature of topological settable systems that we did not exploit in

mapping the private-value auction game to our causal framework. This is the possibility of having

a countable number of structurally exogenous (fundamental) variables or endogenous variables.

This feature, however, is not superáuous. It is required in a variety of economic contexts, not only

in repeated games, time-series modeling, adaptive learning, and rational expectations modeling

(see WC, section 7; Chen and White, 1998;27 and White, Al-Sadoon, and Chalak, 2011), but also

27Among their examples of recursive learning in Banach spaces, Chen and White (1998) consider a learning agent
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in Bayesian games of incomplete information with countably inÖnite-dimensional type and action

spaces, as in Renyís (2011) equilibrium existence theory for monotone pure-strategy Bayesian

games. In fact, it may be possible to map topological settable systems to Renyís general setup,

supporting causal discourse there. We forego this here, as the impressive generality of Renyís

framework would interfere with our desire to make our discussion relatively transparent.

Pure-strategy equilibrium exists when, among other things, types do not contain atoms ñ that

is, types do not take some value with positive probability. As Reny (2011) notes, when type

spaces have atoms, pure-strategy equilibrium need not exist; however, mixed-strategy equilibrium

may exist under suitable conditions. Plausibly, topological settable systems also apply to mixed-

strategy games. The key to showing this is to specify appropriate topological spaces to which the

mixed strategy settings and responses belong.

To see the basic idea, suppose that mixed-strategy bidders randomly choose among a countable

number of pure strategies s; s = 1; 2; :::. We can represent this random choice as

S =

1X

s=1

s 1fS = sg =
1X

s=1

s 1f&(X;  ) = sg;

where 1fg is the indicator function and S  &(X(); ) is a random integer whose realization

s = &(X(!); !) determines which strategy is played. A new feature here is the ìstrategy choiceî

function & : I   ! N+; here, we permit agent type28 to ináuence the probability of choosing

a particular pure strategy. The mixed strategy settings B = S are thus random strategies, as

deÖned in Section 2. The ex ante best response B can be written

B =
1X

s=1

s 1f&
(X; ) = sg;

where f1; 

2; :::g is the (selected) set of optimally chosen pure strategies and & is the (selected)

optimal strategy choice function.

From this, we see that mixed strategy settings can be viewed as elements of (1s=1Ms)  S;

where S is a collection of measurable mappings &; and that mixed strategy best responses take

values in (1s=1M) S. To ensure that topological settable systems apply, it su¢ces that S has

a topology, since we can then take the topology for (1s=1M)S to be the product topology. For

example, if the elements of S have Önite expectation, then we can deÖne the metric dS(S1; S2) 

E(jS1  S2j) =
R
jS1(!) S2(!)j dPa(!) and let the topology for S be the dSmetric topology.

Finally, we note that multiple equilibria are generic to realistic games. So far, we have only

explicitly discussed one way of handling multiplicity in topological settable systems, equilibrium

solving a stochastic dynamic programming problem and the game of Öctitious play with continuum strategies, an
inÖnitely repeated dynamic game of incomplete information.
28The type could be countably dimensioned, but we suppress this possibility here for simplicity.
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selection mechanisms. An important complementary method is equilibrium reÖnement. This

is concerned with eliminating ìunreasonableî equilibria, leaving only equilibria that are ìself-

enforcingî in some sense. Leading equilibrium reÖnement approaches include sequential rational-

ity (Kreps and Wilson 1982), perfectness (Selten, 1974), properness (Myerson, 1978), and strategic

stability (Kohlberg and Mertens, 1986), among others. Topological settable systems can readily

incorporate equilibrium reÖnement. We noted earlier that a systemís attributes, a; can include a

Bayesian gameís structure, b: Equilibrium reÖnement typically speciÖes certain necessary prop-

erties of the limit, suitably deÖned, of a sequence of games fbkg; where k is a ìreÖnement indexî.

ReÖnement amounts to the convention that players will play only those equilibria having the

speciÖed necessary limit properties. Both this convention and the sequence fbkg can be included

in the system attributes, a:

As our discussion suggests, topological settable systems can support causal discourse in eco-

nomics quite broadly. Nevertheless, there are important areas where topological settable systems,

as formulated here, do not apply. For example, our framework does not apply to continous-time

structural models, such as those used to model asset price evolution in mathematical Önance. The

di¢culty is that here our units are discretely indexed, but treating continuous time requires units

to be continuously indexed. Extending the present discrete topological settable systems to the

continuous case appears feasible and is an important direction for future research.

6 Conclusion

Despite the central role of causal discourse in explaining economic behavior, su¢ciently general

rigorous foundations for this discourse have so far been missing. We illustrate this lack in the

familiar context of anNbidder private-value auction, posing a variety of relevant causal questions

that cannot be addressed within existing causal frameworks. We then introduce a new causal

framework that delivers the missing answers, topological settable systems, an extension of the

causal frameworks of Pearl (2000) and White and Chalak (2009). The examples in WC, White,

Chalak, and Lu (2011), and White, Al-Sadoon, and Chalak (2011), together with our further

discussion here, show the versatility of topological settable systems in supporting causal discourse

in economics.

In the Introduction, we posed a variety of causal questions applicable to our auction game.

We sum up by reviewing the answers emerging from our topological settable systems framework:

 In what sense is a bidderís strategy or action causally a§ected by other biddersí strategies

or actions?

Without specifying which variables are jointly responding to the other variables of the system,
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any discussion of causality is ambiguous ñ the sense in which causality may or may not be present

requires specifying this. For example, answers can di§er between the contexts of individual best

response and Bayesian-Nash equilibrium. In the language of settable systems, causal discourse

is partition speciÖc. For individual best responses in our auction game (that is, in either the

elementary or agent partition), other biddersí suboptimal strategies directly a§ect a given agentís

strategy. On the other hand, in Bayesian-Nash equilibrium (i.e., the global partition) nothing

causally a§ects agentsí strategies. There, strategies are non-causally explained by the gameís

primitives, embedded in the system attributes, a: Player actions have no e§ect on other biddersí

strategies or actions, whether for individually rational or equilibrium behavior, and the players

know this.

 How is the ceteris paribus ìe§ectî of bidder jís strategy on bidder iís strategy deÖned?

Because general topological spaces need not be vector spaces, we deÖne an e§ect of a strategy

intervention, for individually rational behavior, as a pair of corresponding best responses. Never-

theless, since the strategy spaceM is a subset of the set of bounded Borel-measurable functions

from I to R; the ìmagnitudeî of this e§ect can be deÖned as the Lp norm distance between the

pair of best responses.

 How do rationality in behavior and belief matter for causal discourse?

Rationality in behavior determines the individual best response functions for the agents. Because

causal relations are properties of the response functions, rationality in behavior thus determines

these causal relations. Requiring rationality in belief imposes the mutual consistency conditions

of Bayesian-Nash equilibrium. This determines equilibrium structural relations and the causal

relations there; it also links causal e§ects across partitions.

 What is the causal role of types, Xi, if any?

For individually rational behavior, own type directly causes an agentís bid but not her strategy.

In Bayesian-Nash equilibrium, the own type also causes an agentís bid but not her strategy.

 Do N and F have e§ects? If so, how? If not, why not?

In the Nbidder private-information game considered here, N and F do not have causal e§ects.

This is because N and F are Öxed, not variable. They are therefore not subject to intervention,

so e§ects cannot be deÖned for them. In other contexts where N and/or F are variable, then

appropriate e§ects can be deÖned for N and F: Causal relations not only are partition speciÖc,

but also are speciÖc to the given attributes.
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 What are the structural equations here?

The structural equations relate partition-speciÖc responses to partition-speciÖc settings. As Strotz

and Wold (1960) prescribe, the structural equations can embody mutual causality but not instan-

taneous causality or simultaneity. For example, elementary partition responses are given by

e;i = ri(i)

be;i = e(i; xi); i = 1; :::; N:

 SpeciÖcally, are the simultaneous equations of Bayesian-Nash equilibrium (3) structural?

No ñ these simultaneous equations are not structural equations. They are constructed from

structural equations to enforce mutually consistency or compatibility conditions across partitions.

 How about the equilibrium ìreduced formî? Is it structural?

Yes ñ the equations of the equilibrium reduced form are structural. In particular, the equilibrium

equations for strategies are structural, but causality is absent.

 Do equilibrium strategies and actions (yi and byi ) have structural meaning and/or causal

content?

Both yi and byi have structural meaning as response values for agent iís equilibrium strategy

and bid, respectively. yi also deÖnes the equilibrium (constant) strategy response function. Its

constancy implies that strategies have no causes in equilibrium. Equilibrium bids are caused by

agentsí own types.

We emphasize that, of necessity, causal discourse is meaningful only within a well-deÖned

causal framework. Thus, our answers to these causal questions should be viewed as valid solely

within the context of topological settable systems. If causal inquiries can be addressed using this

framework then this acts as validation for the settable systems framework. If economic structures

of interest fall outside of topological settable systems then this provides motivation for formulating

a more sensible or comprehensive alternative framework.

Appendix

A.1 Monotone strategies weakly dominate non-monotone strategies

We verify the claim in Section 2 that monotone strategies are never worse than non-monotone

strategies. SpeciÖcally, for any non-monotone strategy , we construct an explicit monotone
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strategy m that weakly dominates it. If  is monotone, then the identical construction gives

m =  a:e: For brevity, we omit the straightforward demonstration of this last fact. The

conditions and notation of Section 2 apply here unless explicitly noted otherwise.

Proposition A.1 (Weak Domination): Let i : IN1 ! IN1 be a given proÖle with mea-

surable components that are not necessarily monotone, and let  : I ! I be a non-monotone

measurable strategy. Then there exists a monotone strategy m : I ! I such that  i(
m;i) 

 i(;i):

Proof : For convenience, write the probability that bidder i wins by bidding b asG(b) = Gi(b;i):

Note that G is a (weakly) monotone function in b, although it need not be either left or right

continuous. The objective function  i(;i)  E [G ((Xi)) (Xi  (Xi))] is well deÖned for

non-monotone  and i, provided these are measurable, as assumed.

Let Z  (Xi), and let H denote the CDF of Z, so that Pr(Z  z) = H(z) for all z 2 [0; 1]:

Now we construct m : I! I satisfying: (i) m is monotone; and (ii) Z and Zm  m(Xi) have

the same distribution. For all p 2 (0; 1), deÖne the quantile function

H1(p)  inffz 2 [0; 1] : p  H(z)g:

Observe that this is well deÖned for all CDFs H; Z need not be continuous. We then deÖne

m(x)  H1(F (x));

where F is the (strictly increasing) distribution of Xi: As m is the composition of monotone func-

tions, it is also monotone. With Zm  m(Xi); we have Hm(z)  P [Zm  z] = P [H1(F (Xi)) 

z] = P [H1(U)  z]; where U  F (Xi) has the uniform distribution on (0; 1) by the probabil-

ity integral transform theorem. It follows from the quantile function theorem of Angus (1994,

theorem 2) that H1(U) has the CDF H: Thus Hm = H:

Because Zm and Z have the same distribution, then

E [G (Zm)Zm] = E [G (Z)Z] :

It thus su¢ces to show

E [G (Zm)Xi]  E [G (Z)Xi] :

To show this, we write

E( [G (Zm)G (Z)] Xi) =
Z
[G (m(x))G ((x))] x dF (x):

Let u = F (x), m(u) = m

F1(u)


, (u) = 


F1(u)


. Then

E( [G (Zm)G (Z)] Xi) =
Z 1

0
[G (m(u))G ((u))] F1(u) du:
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For any Borel subset B of [0; 1]; deÖne the measures m(B) 
R
B G (

m(u)) du and (B) 
R
B G ((u)) du: By construction, 

m and  are absolutely continuous with respect to Lebesgue

measure, with respective Radon-Nikodym derivatives dm=du = G (m()) and d=du = G (()) ;

uniquely deÖned a:e: (e.g., Bartle (1966, theorem 8.9)). This permits us to write

E( [G (Zm)G (Z)] Xi) =
Z 1

0
F1(u) [dm(u) d(u)]:

Letting Mm(u)  m([0; u]) =
R u
0 G (

m(v)) dv and M(u)  ([0; u]) =
R u
0 G ((v)) dv and apply-

ing Lebesgue-Stieltjes integration by parts (e.g., Hewitt, 1960, theorem A), we obtain

Z 1

0
F1(u) [dm(u) d(u)] = fm(I) (I)g F1(1)

Z 1

0
fMm(u)M(u)g dF1(u)

= 
Z 1

0
fMm(u)M(u)g dF1(u);

as m(I) (I) = E [G (Zm)] E [G (Z)] = 0 by the identical distribution of Zm and Z:

We now show that if we condition on U 2 [0; u], for any u 2 [0; 1], then G (m(U)) is Örst-order

stochastically dominated by G ((U)). (i) For any t 2 [0; G (m(u))],

Pr (G (m(U))  t j U  u) =
Pr (G (m(U))  t)

u
=
Pr (G ((U))  t)

u
;

where the Örst equality holds by the monotonicity of G and m, and the second holds as G(m(U))

and G((U)) have the same distribution. Now Pr (G ((U))  t)  Pr(G ((U))  t \ U  u) =

Pr (G ((U))  t j U  u) Pr (U  u) = Pr (G ((U))  t j U  u) u; which implies

Pr fG (m(U))  t j U  ug  Pr fG ((U))  t j U  ug :

(ii) For t 2 (G (m(u)) ; 1],

1 = Pr fG (m(U))  t j U  ug  Pr fG ((U))  t j U  ug :

Because u is arbitrary, then conditional on U  u for any u 2 [0; 1], G (m(U)) is Örst-order

stochastically dominated by G ((U)).

Hence,

E [G ((U)) j U  u]  E [G (m(U)) j U  u] ;

which implies that M(u) Mm(u) for all u 2 [0; 1]. As F1() is a strictly increasing function, it

follows that dF1(u) > 0; so that

Z 1

0
fMm(u)M(u)g dF1(u)  0:

That is, E( [G (Zm)G (Z)] Xi)  0, and the proof is complete. 
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A.2 Measurable selection for non-metric spaces

Results establishing the existence of a measurable selection when optimizing over a metric space

are well known (see, e.g., Aliprantis and Border (2006, theorem 18.19), and the references cited

there). Here, (2) is optimized over M; which is not metrizable, so those results do not apply.

Lemma 7 of van Zandt and Vives (2007) or the Monotonicity Theorem of Milgrom and Shannon

(1994) ensure that the solution to (2) is a non-empty compact-valued upper hemi-continuous (uhc)

correspondence. A useful measurable selection result for such correspondences is that of Leese

(1978, theorem 4.2). As Leese notes, this result makes use of the axiom of choice. We state a

convenient direct corollary of Leeseís result, which immediately delivers the measurable selection

ri. For simplicity, we use Leeseís notation. Recall that @1 denotes the Örst uncountable cardinal.

Proposition A.2 (Measurable Selection) Let S be a space on which is deÖned a algebra M

of subsets and X any topological space that is either (a) Örst countable, with X having cardinality

@1; or (b) second countable. Let  be a uhc correspondence from S into the space of non-empty

compact subsets of X: Then  has a selector  such that 1(F ) 2M for every closed set F in

X: That is,  is a measurable selector.

Proof : We verify that X satisÖes Leeseís Condition (B) and that  satisÖes Leeseís regularity

condition on , deÖned below. The result then follows.

Condition (B) requires that X has a family of closed sets fBg, whose cardinality is at most

@1, which generates the Borel algebra on X: We verify this only under assumption (a); the

result is immediate given (b): Since X satisÖes the Örst axiom of countability, the neighborhood

system of each point x in X has a countable base, say fUx;ng: Without loss of generality, we can

let fUx;ng be a decreasing nested family of open neighborhoods of x: LetB  ffUx;ng; x 2 Xg:We

verify that B is a base for  ; the topology of X: Given x; let U be a neighborhood of x: Since U is a

neighborhood, it contains an open set V that is also a neighborhood of x: By the properties of our

neighborhood system, we can take nx su¢ciently large that Ux;nx  V: Since x and U are arbitrary,

B is a base for  : Consequently, each member of  is the union of members ofB: The members of 

generate the Borel algebra on X; and so therefore does B: Let fBg  ffUcx;ng; x 2 Xg; where

Ucx;n is the (closed) complement of Ux;n: Thus, fBg also generates the Borel algebra on X: By

assumption, X has cardinality @1. The cardinality of fBg is then @0  @1 = max(@0;@1) = @1
under the axiom of choice. Condition (B) therefore holds.

Next, for any subset F of X, let (F )  ft 2 S : (t) \ F 6= ?g. We must show that (F )

belongs toM for all closed F in X . Let F be any closed set in X; we will show that (F ) is also

a closed set and thus a Borel set. Pick an arbitrary convergent sequence fn 2 (F ); n = 1; 2; :::;

such that fn ! f with f 2 S. This implies that (fn) \ F 6= ? for all n. It then su¢ces to show
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that (f) \ F 6= ?, so that (F ) is closed. We prove this by contradiction.

Thus, suppose that (f)\F = ?. Because () is uhc, for any open neighborhood N of (f),

there exists a neighborhood U of f such that (g) is a subset of N for all g 2 U . In other words,

for n su¢ciently large, (fn) is a subset of N . Hence, F \ N is non-empty, since F contains a

subset in (fn). Hence, for any open neighborhood N of (f), F \ N 6= ?. Let eN = N\F c.

Since (f) \ F = ?, we have (f)  F c, so that (f)  eN . Because eN is an open set, it is still

an open neighborhood of (f). But F \ eN = ? by the deÖnition of eN , a contradiction.
This veriÖes the conditions of Leese (1978, theorem 4.2), so the result follows. 

This result immediately implies that the measurable selection ri exists, given the continuum

hypothesis, that is, that the cardinality of the continuum, c, is @1:We apply the result above with

S = j 6=iM and X =M: As noted earlier,M is Örst countable; it is also readily veriÖed that it

has cardinality c; which is @1 under the continuum hypothesis.  is the solution to (2), which is

non-empty, compact-valued, and uhc. ri then corresponds to , restricted to j 6=iMs:

A convenient complementary result ensuring the existence of a non-empty, compact-valued,

uhc solution to a general optimization problem is theorem 2 of Ausubel and Deneckere (1993).

This result also ensures the existence of a solution to (2).

As the above proposition suggests, there may be cases where a measurable selection does

not exist. But such cases may still be brought within topological settable systems by viewing

correspondences taking set values in a topological space X; say, as (single-valued) mappings taking

values in the power set, P(X); the set of all subsets of X: This requires specifying a suitable

topology for P(X); known as a hypertopology. We leave aside the details here.

A.3 M is a bounded Banach class

Proposition A.3 (Bounded Banach Class) Let M be the class of monotone functions from

I to I. Then M is a bounded Banach class.

Proof : Following Aumann (1960), it su¢ces to show that there exist two classes of subsets of I,

B and U , which are countable and generate I, such that M  L(B;U) for some  2 N, where

L(B;U) is the Banach class of order  for (U ;B), deÖned as the set of all functions f : I ! I,

such that for all B 2 Q1(B), f1(B) 2 Q+1(U). For  2 N and a class of subsets A, Q(A) is

deÖned recursively in Aumann(1960): Q1(A) consists of all countable unions of members of A;

P1(A) consists of all complements of members of Q1(A); for   2, Q(A) = Q1([<P(A))

and P(A) = P1([<P(A)).

Here, let B = U = f[0; r) : r is a rational number in Ig. By deÖnition, Q1(B) = f[0; a) :

a 2 Ig, and P1(B) consists of all complements of members of Q1(B): P1(B) = f[a; 1] : a 2 Ig.
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Moreover, Q2(B) = Q1(P1(B)) = f(a; 1] : a 2 Rg [ f[a; 1] : a 2 Rg, and P2(B) = P1(P1(B)) =

f[0; a] : a 2 Rg [ f[0; a) : a 2 Rg.

Because Q3(B) = Q1(P1(B) [ P2(B)), we have P2(B)  Q3(B). Thus, for any monotone

function f , f1(B) 2 P2(B)  Q3(B) for any B 2 Q1(B). Therefore f 2 L2(B;B). Since f is an

arbitrary element ofM,M L2(B;B). It follows thatM is a bounded Banach class. 

A.4 Mutual consistency and cross-partition e§ect linkage

We illustrate the role of compatibility in linking Öne partition and coarse partition e§ects. This

also elucidates the relation between settable systems and classical simultaneous equation systems.

(See also Heckman, 2005, section 2.5.)

This illustration is easiest in a context simpler than our auction, so here we consider a di§erent

game, Bertrand duopoly. For maximum transparency, we Örst consider a linear system. We then

consider a more generic case. Thus, suppose that the two Örms have price reaction functions

pe;1 = b1p2 + c
0
1s1 pe;2 = b2p1 + c

0
2s2;

where pe;1 and pe;2 are the (scalar) prices charged by Örms 1 and 2 for their di§erentiated goods,

respectively, given their rivalís arbitrary prices p2 and p1 and vectors of possibly Örm-speciÖc

cost and demand shifters, s1 and s2: Viewed as a settable system, these are the elementary

partition structural equations, with responses (pe;1 ; pe;2 ); price settings (p1; p2); and fundamental

settings (s1; s2): The coe¢cients (b1; c01) and (b2; c
0
2) embody elementary partition e§ects and are

(functions of) attributes. For simplicity, we suppress the aggregate demand functions for price-

taking consumers.

Next, suppose that equilibrium prices in this system are determined as

pg;1 = 01s pg;2 = 02s;

where s  (s01; s
0
2)
0. The ís are coe¢cients embodying equilibrium price e§ects of the cost

and demand shifters s: Viewed as a settable system, these are equilibrium structural equations,

corresponding to the global partition, with equilibrium responses (pg;1 ; pg;2 ) depending only on

fundamental settings s: Like (b1; c01) and (b2; c
0
2); the ís are (functions of) attributes.

Without further structure, the settable systems elementary and global partitions for the

Bertrand duopoly game are comparable but need not be compatible. Even without compatibility,

causal discourse is well deÖned for both the elementary (Öne) and equilibrium (coarse) partitions.

There is, however, no necessary relation between elementary partition e§ects and equilibrium

e§ects. Observe that simultaneity is not present in these structural systems, although mutual

causality is present in the elementary partition.
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Compatibility between Öne and coarse partitions requires

pg;1 = b1p
g;
2 + c01s1 pg;2 = b2p

g;
1 + c02s2;

where equilibrium responses appear in the elementary partition response functions. Here, this

enforces Nash equilibrium. When b1b2 6= 1; this simultaneous system has a unique solution:

pg;1 = (1 b1b2)1[c01s1 + b1c
0
2s2]

pg;2 = (1 b1b2)1[b2c01s1 + c
0
2s2]:

Nash equilibrium thus ensures that the e§ects of s on equilibrium prices (pg;1 ; pg;2 ) are

1 = (011; 
0
12)

0 = (1 b1b2)1[c01; b1c
0
2]
0

2 = (021; 
0
22)

0 = (1 b1b2)1[b2c01; c
0
2]
0:

Compatibility thus implies functional dependence between equilibrium and elementary partition

e§ects.

This functional dependence is a main feature of compatibility: it allows inference about

Öne partition e§ects based on coarse partition e§ects, whenever speciÖc elements of (b0; c0) =

((b1; b2); (c
0
1; c

0
2)) can be recovered from  = (01; 

0
2)
0: That is, one can make valid statements

about cause and e§ect in unobservable Öne partition structures using knowledge gained solely

from observable coarse partition (e.g., equilibrium) structures. Recovering elements of (b0; c0)

from  = (01; 
0
2)
0 is, of course, the classical identiÖcation problem in systems of structural equa-

tions (Fisher, 1966). This example shows, however, that in settable systems, instantaneous or

simultaneous causality has no role to play. It is necessary and su¢cient that each agent has

su¢cient information to compute their equilibrium response.29

The implications of compatibility for linking e§ects between partitions extend beyond linear

structures. Suppose Örms 1 and 2 have `1 and `2 products, respectively. Let s = (s00; s
0
1; s

0
2)
0;

where sj has dimension kj ; and s1 and s2 do not have common elements. Consider the generic

reaction functions for the Örms,

pe;1 = re1(p2; s0; s1;a) pe;2 = re2(p1; s0; s2;a);

together with the generic equilibrium responses,

pg;1 = rg1(s;a) pg;2 = rg2(s;a):

29These informational requirements have important implications for modeling. With less information available
to players, dynamic learning structures (e.g., Chen and White (1998)) become salient.
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Suppose also that mutual consistency conditions hold:

pg;1 = re1(p
g;
2 ; s0; s1;a) pg;2 = re2(p

g;
1 ; s0; s2;a):

To illustrate the implied e§ect linkages for Örm 1, we substitute to obtain

rg1(s;a) = re1( r
g
2(s;a); s0; s1;a):

Assuming di§erentiability and di§erentiating with respect to s2 gives

rs2r
g
1(s;a)

k2`1

= rs2r
g
2(s;a)

k2`2

rp2r
e
1( r

g
2(s;a); s0; s1;a);
`2`1

where rs2 and rp2 are the gradient operators with respect to s2 and p2; respectively. Now

pre-multiply both sides of this equation by rs2r
g
2(s;a)

0 to get

rs2r
g
2(s;a)

0rs2r
g
1(s;a) = [rs2r

g
2(s;a)

0rs2r
g
2(s;a)] rp2r

e
1(r

g
2(s;a); s0; s1;a):

This equation can be solved for rp2re1(r
g
2(s;a); s0; s1;a), provided rs2r

g
2(s;a)

0rs2r
g
2(s;a) has full

rank (the generalized rank condition at s), for which a necessary condition is that k2  `2; the

order condition. With full rank,

rp2r
e
1(p

g
2; s0; s1;a) = [rs2r

g
2(s;a)

0rs2r
g
2(s;a)]

1 rs2r
g
2(s;a)

0rs1r
g
1(s;a):

These are the reaction function marginal e§ects of Örm 2ís prices on Örm 1ís prices at pg;2 = rg2(s;a)

and (s0; s1): These are expressed solely in terms of equilibrium e§ects, due to compatibility. White

and Chalak (2011) provide further discussion of identiÖcation and estimation of causal e§ects using

ìderivative ratioî measures of this sort.
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